Summer term 2020 – Topics for NEIDI (MSc), Project (BSc) & KSWS (BSc)

Sebastian Bader
Mobile Multimedia Information Systems
How many shims are blue / silver?

- **Recommended Requirements:**
 - experience with image / video processing

- **Tasks:**
 - realise a camera setup and analysis system which recognises the number and state (blue / silver) of multiple shims
 - realtime capable – analysing video streams
 - robust – must work under various background / lighting conditions

Contact: sebastian.bader@uni-rostock.de
Detection of Screws with and without bolt

• **Recommended Requirements:**
 – experience with image / video processing

• **Tasks:**
 – realise a camera setup and analysis system which recognises the number of screws with and without bolt
 – realtime capable – analysing video streams
 – robust – must work under various background / lighting conditions

Contact: sebastian.bader@uni-rostock.de
Where are my hands 2.0?

• **Recommended Requirements:**
 - experience with image / video processing

• **Tasks:**
 - based on an existing colour-based segmentation, the correct positions of hands shall be detected:
 - multiple hands should be recognised, number, position, number of fingers, …
 - realtime capable – analysing video streams
 - robust – must work under various background / lighting conditions

Contact: sebastian.bader@uni-rostock.de
Gesture Recognition

• **Recommended Requirements:**
 - experience with image / video processing using convolutional neural networks

• **Tasks:**
 - Recognition of hand gestures within a video sequence (based on region of interest, color based segmentation, model of a hands)
 - Realise a camera setup
 - Record a training and validation dataset
 - Detecting different gestures occurring in neuro-rehabilitation exercises

Contact: sebastian.bader@uni-rostock.de
Finger Tapping

• **Recommended Requirements:**
 - experience with either:
 A. microcontrollers (Arduino / Raspberry Pi), or
 B. 3D-cameras

• **Tasks:**
 - detection of finger tapping & count the number of tappings per finger
 - realisation, either
 A. a pressure sensor for each finger, or
 B. 3d-camera (leap motion)

Contact: sebastian.bader@uni-rostock.de
Generating textual explanations for heat maps

• Recommended requirements:
 – Experiences in Python and/or image processing

• Tasks:
 – Generate explanations for the output of a given neural network model, capable of detecting Alzheimer’s disease in MRI scans
 – Additional information shall be provided for highlighted image areas, e.g. anatomical region
 – Textual descriptions shall be generated and displayed (e.g. as tooltip)
 – Optimization of interactive visualization and exploration of the heatmaps
 – Online capability? Can this information be calculated on demand?

Contact: martin.dyrba@uni-rostock.de
Semantic, Graph-based Representation of Data for Life Science

• Recommended requirements:
 – Experience with handling larger amounts of data
 – Experience with graph based algorithms and databases

• Task:
 – perform an review of the state-of-the-art on graph-based and semantic approaches for life science
 – transform part of an database on mutations into a graph-based database and to investigate benefits and drawbacks of such a solution compared to standards SQL-based representations (e.g. automatic consistency checks; queries for cohort stratification / study enrolment).

Contact: kristina.yordanova@uni-rostock.de
Discovery in Low-data Environments

• **Recommended requirements:**
 – Experience with machine learning and data sparsity

• **Task:**
 – In life science and in rare diseases in particular, very often only limited data is available – limited in amount, or feature rich data, with many irrelevant features
 – Machine learning has come up with various methods that still perform well in these low-data environments (transfer learning, one-shot learning, …).
 – Goal of this project is to
 – perform a review of the-state-of-the-art on methods for discovery in low-data environments, with a focus on life sciences;
 – to build a prototype for data provided by Centogene (either genomic or metabolomic).

Contact: sebastian.bader@uni-rostock.de
Rule-Extraction from Neural Networks

• **Recommended requirements:**
 – Experience with training neural networks using Keras

• **Task:**
 – current validation / self-explanation approaches for neural networks are usually based on visualisations of the input-output-behaviour
 – this might be misleading as exemplified in the figure
 – rule-extraction methods shall be investigated and compared
 – a suitable test-bed shall be defined and existing algorithms be evaluated

Contact: sebastian.bader@uni-rostock.de