Realtime Publish/Subscribe for Cyber-Physical Systems
KSWS AVA / Projekt AVA / NEidl VHR

Dr.-Ing. Peter Danielis
Verteiltes Hochleistungsrechnen (VHR)

Dr.-Ing. Helge Parzyjegla
Architektur von Anwendungssystemen (AVA)

M.
What is Realtime (Echtzeit)?

Not necessarily fast, but predictable!

→ Do the right thing at the right time.
What is Publish/Subscribe?

- **publish** \((n)\)
 - Publisher produce data and offer them to everyone interested

- **subscribe** \((F_n)\)
 - Subscriber subscribe those data, in which they are interested
Scalable \(m:n \)-group communication

\[\text{publish}(n) \]

\[\text{subscribe}(F_n) \]
What are Cyber-Physical Systems?

> Systems containing software components and mechanical or electronic parts that are interconnected via network
> Interact with the real, physical world
 → are subject to physical laws
 → have requirements w.r.t (real) time
> Examples
 > Industry robots
 > Production line in the smart factory
 > Reconfigurable production cell of a smart factory
 > Modern (autonomous) vehicles
 > Steer/fly by wire
 > Autopilots of any kind
Industry Robots in a Smart Factory

Time-critical communication when handing over work pieces.

Industry robots made by Kuka
Reconfigurable Production Cell

Flexible communication in case of task changes.

Industry robots made by Kuka
Underwater-Scenario 1: Maintenance of the foundations of offshore wind turbines
Underwater-Scenario 2:
Clearance of Unexploded Ordnance (UXO) from World War II
Projects and Collaborations

> **Realtime publish/subscribe communication**
 > Part of a DFG project
 > Planning of flexible communication patterns and reservation of required time slots on communication links
 > Formal models and methods for scheduling
 > Estimation of the worst case runtime for publishing and filtering (content-based if necessary) a notification
 > Application scenario within a smart factory

> **Autonomous Underwater Vehicles (AUVs)**
 > Cooperation with the Institute for the Protection of Maritime Infrastructures, Resilience Department of Maritime Systems, German Aerospace Center (DLR) Bremerhaven
 > Cooperative navigation of several AUVs
 > Limited Energy restricts movement and usage of sensors
 > Opportunistic communication via acoustic modems
Tasks: Realtime Publish/Subscribe

- Simulation models for realtime communication (TSN standards)
 - TSN configuration (IEEE 802.1Qcc)
 - Time synchronization (IEEE 802.1AS)
 - Controlled timing (IEEE 802.1Qch)
 - Reliable communication (IEEE 802.1Qca, IEEE 802.1Qci)
 - Test/extension of the new TSN features of OMNeT++/INET

- TSN controller (CUC and CNC)
 - Implementation of TSN configuration option (IEEE 802.1Qcc)
 - Based on Ryu framework for SDN controller
 - Integration of a trivial planning component

- Development and test platform for prototypes
 - Scripts for configuring TSN switches
 - Generators for test data
 - Management tools for different purposes
Tasks: Autonomous Underwater Vehicles

> Cooperative navigation of several AUVs
 > Implementation of motion models
 > Implementation of localization algorithms

> Energy consumption caused by motion and activated sensors
 > Implementation of models for energy consumption for movement and activated sensors
 > Implementation of models for energy consumption for image processing algorithms

> Opportunistic communication via acoustic modems
 > Implementation of realistic underwater communication

> Implementations using Simulator OMNeT++ and C++
 > Python for scripting and evaluation of simulation results
Organizational Matters

- Up to two teams
 - Team A: Realtime publish/subscribe (probably more fine-grained distribution of tasks)
 - Team B: Autonomous Underwater Vehicles (AUVs)

- Design methodology
 - Agile development
 - Three milestones w.r.t. design, implementation, documentation

Type and size/scale of tasks depends on number and interests of participants!
Registration and Contact

> Enrollement in respective Stud.IP course

1. 23846 (Lecture) KSWS: AVA
2. 23848 (Lecture) Neueste Entwicklungen der Informatik (Verteiltes Hochleistungsrechnen)
3. 23847 (Project) Projekt: AVA

> Questions via email to Peter Danielis and Helge Parzyjegla
 > peter.danielis@uni-rostock.de
 > helge.parzyjegla@uni-rostock.de