

Traditio et Innovatio

Realtime Publish/Subscribe for Cyber-Physical Systems

KSWS AVA / Projekt AVA / NEidl VHR

Dr.-Ing. Peter Danielis Verteiltes Hochleistungsrechnen (VHR)

Dr.-Ing. Helge Parzyjegla Architektur von Anwendungssystemen (AVA)

M.Sc. Eike Björn Schweißguth Institut für Angewandte Mikroelektronik und Datentechnik (IMD)

What is Realtime (Echtzeit)?

Not neccessarily fast, but predictable! \rightarrow Do the right thing at the right time.

Uni Rostock

Realtime Publish/Subscribe for Cyber-Physisical Systems

What are Cyber-Physical Systems?

- > Systems containing software components and mechanical or electronic parts that are interconnected via network
- Interact with the real, physical world
 - \rightarrow are subject to physical laws
 - \rightarrow have requirements w.r.t (real) time
- > Examples
 - > Industry robots
 - > Production line in the smart factory
 - > Reconfigurable production cell of a smart factory
 - > Modern (autonomous) vehicles
 - > Steer/fly by wire
 - > Autopilots of any kind

Industry Robots in a Smart Factory

Industry robots made by Kuka

Time-critical communication when handing over work pieces.

Reconfigurable Production Cell

Industry robots made by Kuka

7

Flexible communication in case of task changes.

Communication Schedule

- > Streams
 - > From node 6 to nodes 7 and 10 (multicast)
 - > From node 10 to node 7
- > Schedule
 - > Determines exactly when which packet is sent over which link
 - > Has to be always without conflicts \rightarrow provable correct
 - > Needs to be adapted whenever communication pattern changes
 - > Additional traffic of lesser importance is possible

Projects and Collaborations

- > Realtime publish/subscribe communication
 - > Part of a DFG project (VHR, AVA und IMD)
 - > Planning of flexible communication patterns and reservation of required time slots on communication links
 - > Formal models and methods for scheduling
 - Estimation of the worst case runtime for publishing and filtering (content-based if necessary) a notification
 - > Application scenario within a smart factory
- > Autonomous Underwater Vehicles (AUVs)
 - Cooperation with the Institute for the Protection of Maritime Infrastructures, Resilience Department of Maritime Systems, German Aerospace Center (DLR) Bremerhaven

Tasks: Realtime Publish/Subscribe

> Data models and filter models

- > Design of suitable data models
- > Design of corresponding filter models
- > Prototypical implementation (probably) in C
- > Realtime properties
 - > Estimation of Worst Case Execution Time (WCET)
 - > Scalability analysis (#Filter, #Daten, #Subscriber)
 - > Test/measurement of implementation
- > Development and test platform for prototyping
 - > Scripts for configuring TSN switches
 - > Traffic generators for test traffic
 - > Management platform/tools of any kind

Tasks: Realtime Communication Schedule

- > Integer Linear Programming (ILP) model
 - > Familiarize with formal modeling of optimization problems
 - > Familiarize with programming an ILP solver (\rightarrow Python)
- > Porting existing ILP model from Gurobi to CPLEX and PuLP
 - > Document the steps for porting models
 - > Evaluation of model complexity and solver runtime
- > ILP models for flow migration
 - Development of new models to reschedule a part of an existing schedule
 - Migration of flows/streams to different time slots and/or different paths

Optional: Autonomous Underwater Vehicles

- > Cooperative navigation of several AUVs
 - > Battery capacity limits motion and sensors
 - > Opportunistic communication via acoustic modems
- > Limited number of advanced tasks available
 - > Implementations using Simulator OMNeT++ and C++
 - > Improving motion models and 3D visualization
 - Simulation of sensors (energy consumption, coupling with other systems)
 - > Modelling/simulation of underwater media and communication

Organizational Matters

> Up to three teams

- > Team A: Realtime publish/subscribe
- > Team B: Realtime Communication Schedule
- > Optional team C: Autonomous Underwater Vehicles (AUVs)
- > Design methodology
 - > Agile development
 - > Three milestones w.r.t. design, implementation, documentation

Type and size/scale of tasks depends on number and interests of participants!

Registration and Contact

- > Enrolement in respective Stud.IP course
- 1. 🕥 23846 (Vorlesung) KSWS: AVA
- 2. 23848 (Vorlesung) Neueste Entwicklungen der Informatik (Verteiltes Hochleistungsrechnen
- 3. 🕥 23847 (Projekt) Projekt: AVA
- > Questions via email to Peter Danielis and Helge Parzyjegla
 - > peter.danielis@uni-rostock.de
 - > <u>helge.parzyjegla@uni-rostock.de</u>

