

Traditio et Innovatio

# Realtime Publish/Subscribe for Cyber-Physical Systems

NEidl / Projekt CSI

PD Dr.-Ing. habil. Peter Danielis Privatdozent für Parallele Systeme (ParSys)

Dr.-Ing. Helge Parzyjegla Architektur von Anwendungssystemen (AVA)

### What is Realtime (Echtzeit)?



Not neccessarily fast, but predictable!  $\rightarrow$  Do the right thing at the right time.





#### Uni Rostock





## What are Cyber-Physical Systems?

- > Systems containing software components and mechanical or electronic parts that are interconnected via network
- > Interact with the real, physical world
  - $\rightarrow$  are subject to physical laws
  - $\rightarrow$  have requirements w.r.t (real) time
- > Examples
  - > Industry robots
    - > Production line in the smart factory
    - > Reconfigurable production cell of a smart factory
  - > Modern (autonomous) vehicles
    - > Steer/fly by wire
    - > Autopilots of any kind



#### **Industry Robots in a Smart Factory**



Industry robots made by Kuka

#### Time-critical communication when handing over work pieces.



#### **Reconfigurable Production Cell**



Industry robots made by Kuka

#### Flexible communication in case of task changes.



#### **Communication Schedule**





- > Streams
  - > From node 6 to nodes 7 and 10 (multicast)
  - > From node 10 to node 7
- > Schedule
  - > Determines exactly when which packet is sent over which link
  - > Has to be always without conflicts  $\rightarrow$  provable correct
  - > Needs to be adapted whenever communication pattern changes
  - > Additional traffic of lesser importance is possible

Underwater-Scenario 1: Maintenance of the foundations of offshore wind turbines

シ

#### Underwater-Scenario 2: Clearance of Unexploded Ordnance (UXO) from World War II



### **Projects and Collaborations**

- > Realtime publish/subscribe communication
  - > Part of a DFG project

Uni Rostock

- > Planning of flexible communication patterns and reservation of required time slots on communication links
- > Formal models and methods for scheduling
- Estimation of the worst case runtime for publishing and filtering (content-based if necessary) a notification
- > Application scenario within a smart factory
- > Autonomous Underwater Vehicles (AUVs)
  - Cooperation with the Institute for the Protection of Maritime Infrastructures, Resilience Department of Maritime Systems, German Aerospace Center (DLR) Bremerhaven
  - > Cooperative navigation of several AUVs
  - > Limited Energy restricts movement and usage of sensors
  - > Opportunistic communication via acoustic modems

## Tasks: Realtime Publish/Subscribe

- > Simulation models for realtime communication (TSN standards)
  - > Test and extension of new TSN features of OMNeT++/INET
  - > Simulation of mixed-critical data traffic
  - > Configuration of time-critical networks with mixed-critical traffic
  - > Simulation model for per-stream filtering and policing
- > Publish/Subscribe SDN-Controller
  - > Extension of the ONOS-SDN-Controller for Publish/Subscribe
  - > Open Network Operating System (ONOS)
    - > Modular, extensible, and distributed controller architecture written in Java
    - > Available as a Linux VM
  - > Northbound application for management based on intents
    - > REST interface for technical users (e.g., applications)
    - > Web application for human users (e.g., administrators)
  - > Southbound interface as alternative (inband) management interface
  - > Network emulation via Mininet and Open vSwitch
  - > Comparison (e.g., evaluation) of management via northbound and southbound interface



#### **Tasks: Autonomous Underwater Vehicles**

- > Development of an integrated simulation architecture
- > Porting of existing models to OMNeT++ 6.0/INET 4.4
- > Further development of motion models for AUVs
  - > Reaction to obstacles, autonomous adaptation
- > Integration of simulation models for AUVs
  - Energy consumption, communication with acoustic modems, motion, sensors
- > Simulation of cooperative missions
  - > Formation of multiple AUVs
  - > Mapping of the seafloor
  - > Cooperative hunting
- > Implementations using simulator OMNeT++ and C++
  - > Python for scripting and evaluation of simulation results

## **Organizational Matters**

- > Weekly meeting on Thursdays at 11:00 am in SR 014 (AE26)
- > Up to two teams
  - Team A: Realtime publish/subscribe (probably more fine-grained distribution of tasks)
  - > Team B: Autonomous Underwater Vehicles (AUVs)
- > Design methodology
  - > Agile development
  - > Three milestones w.r.t. design, implementation, documentation

Type and size/scale of tasks depends on number and interests of participants!



### **Registration and Contact**

- > Enrolement in respective Stud.IP course
- 23848 (Integrierte Lehrveranstaltung) Neueste Entwicklungen der Informatik (Verteiltes Hochleistungsrechnen)

2. 23897 (Integrierte Lehrveranstaltung) Projekt Master Computer Science International : AVA

#### > Questions via email to Peter Danielis and Helge Parzyjegla

- > peter.danielis@uni-rostock.de
- > <u>helge.parzyjegla@uni-rostock.de</u>

