
GitLab HowTo
Informatik, Universität Rostock 10.2021

Universität Rostock
Bereich Informatik

Contents

1 GIT? 2

1.1 What is GIT? . 2

1.2 What not to store in in GIT . 2

1.3 Configure files managed by GIT . 3

1.3.1 Example: C Project . 3

1.3.2 Example: Tex Document . 3

2 Login 4

2.1 Login with an account at informatik.uni-rostock.de . 4

2.2 Login with an external account . 4

3 Set up SSH keys 5

3.1 Introducion . 5

3.2 Open the overview page . 5

3.3 Create an SSH key . 6

3.4 Add an SSH key . 6

3.5 Remove an SSH key . 7

4 Create new project 7

4.1 Using the command line . 7

4.2 With GITLab examples . 8

5 Clone a repository 10

6 Working with the repository 11

6.1 Workflow . 11

6.2 Inspecting changes . 11

6.3 Update the working directory. 12

6.4 Working branch . 12

6.5 Changing things . 13

6.6 Sending changes to the server . 13

6.7 Removing a file out of the history . 13

7 Contact 13

https://www.informatik.uni-rostock.de/it-service/ 1 October 19, 2021

Universität Rostock
Bereich Informatik

1 GIT?

1.1 What is GIT?

GIT is a decentral Version Control System for the collaborative work of one or more persons. It stores changes of
your files in a history. If you use it correctly, you may trace changes to text files line by line and assign the change to
a specific user. If needed, you may restore an older version of your file. GIT stores only the changed lines. Therefore
it needs a small amount of memory to store a long history of many files. Commit your changes as small and often
as possible. So you will be able to pinpoint a changing, that messes with your code by boing step by step back in
the history of changes.

You should put in a GIT repository:

• Source code

• Makefiles

• Configuration needed to build your project.

• Needed files that can’t be generated or loaded from the internet or other repositories.

• Documentation with needed graphics.

• Protocoll that documentates a process that can not be reproduced automatically.

1.2 What not to store in in GIT

As it comes to binary files (like images, videos, ZIP files, PDF files, JAR packets) things get complicated. This files
are not stored in text lines. So GIT has to store the whole file on every change. Even if you simply change one pixel
in a big image. For that reason binary files can grow your GIT history quickly.

The following files should not stored in GIT. Especially if the file size is > 5 MB. (Exception: This file is needed to
create your output files and there is no other way to create this file.)

• Videos (E.g: *.avi ; *.mp4 ; *.wmv)

• Images (E.g: *.jpg ; *.png ; *.tiff ; *.bmp ; *.xcf ; *.psd)

• Presentations (E.g: *.ppt ; *.pptx ; *.pdf)

• Audio files (E.g: *.wav ; *.mp3 ; *.flac ; *.ogg)

• Executables, libraries, installer (E.g: *.exe ; *.dll ; *.lib ; *.msi ; *.o ; *.so ; *.class ; *.jar)

• Binary files (E.g: *.bin ; *.dat ; *.zip ; *.gz ; *.bz)

• Files you can generate with your sources

• Files which are generated during the building process (E.g: *.o ; *.class ; *.aux ; *.idx)

• Debug or program output files (E.g: *.log, *.dat)

• Folders and files from another version management system (E.g: .svn)

• Backups, temporary files, local workspace configuration (E.g: *.swp ; *˜ ; tmp)

Your repository should stay < 300 MB, including history. If you are unsure whether your file belongs in the GIT
repository, ask your supervisor.

https://www.informatik.uni-rostock.de/it-service/ 2 October 19, 2021

Universität Rostock
Bereich Informatik

1.3 Configure files managed by GIT

In every folder of your GIT repository you may add a .gitignore file. This is a text file, listing all folders or files
that should be ignored by GIT when using git add. In the list you may use wildcards (*). „Best practice“ is to
create the .gitignore file only in the main directory of your project.

1.3.1 Example: C Project

The project has this folder structure:

• Makefile

• .gitignore

• a.out

• guessMyNumber.c

• guessMyNumber.o

• myLibrary.a

• myLibrary.c

• myLibrary.o

• myLibrary.so

The files *.c are source code. This files should be in the repository.

The *.o files are files the compiler needs during the build pro-
cess. The file a.out is the generated executable program. The files
myLibrary.a and myLibrary.so are the libraries generated from
myLibrary.c. These files should not be in the repository.

The .gitignore might be like the following:

*.a
*.so
*.o
*.out

1.3.2 Example: Tex Document

• .gitignore

• myPaper.tex

• myPaper.pdf

• myPaper.aux

• myPaper.idx

• myPaper.toc

• myPaper.out

• myPaper.log

• chapter1.tex

• chapter1.aux

• .chapter1.aux.swp

• chapter2.tex

• chapter2.tex˜

• images/

– logo.png

– interestingGraphic.pdf

The *.tex files are the TeX source code. The folder images contains
images needed to create the final document. These files should be in
the repository.

myPaper.pdf is the generated document. The *.log, *.out, *.aux,
*.toc, *.idx files are generated and needed during the building
process. These files should not be in the repository.

The *.swp files are created and used by the text editor (e.g:
chapter1.swp). The editor stores a backup for each edited file (e.g:
chapter2.tex˜). The backup files and the *.swp files should not
be in the repository.

The .gitignore might be like the following:

*.swp
*˜
*.aux
*.idx
*.toc
*.out
*.log

https://www.informatik.uni-rostock.de/it-service/ 3 October 19, 2021

Universität Rostock
Bereich Informatik

2 Login

2.1 Login with an account at informatik.uni-rostock.de

1. Navigate with your browser to:
https://git.informatik.uni-rostock.de/users/sign_in

2. Select: LDAP

3. Enter the name of your informatik account.

4. Enter the password of your informatik account.

5. Click on Sign In.

2.2 Login with an external account

1. Navigate with your browser to:
https://git.informatik.uni-rostock.de/users/sign_in

2. Select: Extern

3. Enter your e-mail address.

4. Enter your password.

5. Click on Sign In.

https://www.informatik.uni-rostock.de/it-service/ 4 October 19, 2021

https://git.informatik.uni-rostock.de/users/sign_in
https://git.informatik.uni-rostock.de/users/sign_in

Universität Rostock
Bereich Informatik

3 Set up SSH keys

3.1 Introducion

SSH keys are used to authenticate yourself to the GIT server. This are pairs of public and private keys. The public
key is send to the GIT server. The private key is kept secret. To be able to lock a single computer or user (e.g. if
your computer account was hacked) there should be a pair for every computer and user.

3.2 Open the overview page

• Click on your symbol on the top right side.

• Click on Edit profile in the appearing menu.

• Click on SSH Keys in the menu on the left side.

https://www.informatik.uni-rostock.de/it-service/ 5 October 19, 2021

Universität Rostock
Bereich Informatik

3.3 Create an SSH key

This step is needed if you don’t have a SSK key on your computer or you want to create a new one for GIT. Otherwise
you can skip this step.

• Start a commandline on your computer.

• Run the following command:
ssh-keygen -t ecdsa -b 521

The Output looks like:
[bob@earth ~]$ ssh-keygen -t ecdsa -b 521
Generating public/private ecdsa key pair.
Enter file in which to save the key (/home/bob/.ssh/id_ecdsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/bob/.ssh/id_ecdsa
Your public key has been saved in /home/bob/.ssh/id_ecdsa.pub
The key fingerprint is:
SHA256:5vKu...9Jk0 bob@earth
The key’s randomart image is:
+---[ECDSA 521]---+
| .. |
| .. |
| o . |
| o . . +..o |
| . = . S +o.+ . |
|+ + .E o |
| +.*..+ o o + . |
|. Booo.+ o. o + |
| o..oooo+ o=++ |
+----[SHA256]-----+

• On the request „Enter file in which to save the key“ you may press enter [Enter] and accept the
default value or enter your own filename.

• On the request „Enter passphrase“ you may secure your SSH keys by a password. You have to repeat your
input in the line „Enter same passphrase again“.
As you enter the passphrase it will not shown. You will need the passphrase on every transfear of data from or
to the GIT server.

3.4 Add an SSH key

• You find your SSH keys in your home folder in the folder .ssh. The files we need have the extension .pub.
E.g: id_ecdsa.pub or id_rsa.pub If you have generated a key in the previous step you will find the name of
the needed file in the line: „Your public key has been saved in ...“

• Open your public key in a text editor. The content is a single line and should look like this:
ecdsa-sha2-nistp521 AAAA...FHw== user@computer

• Copy your key in the field Key.

• Give your key a Title so you will remember to what account/computer it belongs.

• Click on Add key.

https://www.informatik.uni-rostock.de/it-service/ 6 October 19, 2021

Universität Rostock
Bereich Informatik

3.5 Remove an SSH key

• Find the key you want to delete in the Your SSH keys list.

• Click on the trash symbol , on the right side of the key.

• Confirm the question Are you sure you want to delete this SSH key? with a click on Delete.

4 Create new project

4.1 Using the command line

• You have no local project?
Use all steps (1) til (6)

• You have a local project but it is not managed by GIT?
Use steps (2), (4), (5) and (6)

• You have a local GIT project?
Use steps (2) and (6)

The example uses the account myAccount and the project name myProject. The parts printed in green have to
be replaced by values according to your account / project.

1. Create a folder for the new project:
mkdir myProject

2. Enter the folder for the new project:
cd myProject

3. Create some files:
echo ’My Project’ > README.md

4. Initialize GIT.
git init

5. Add the files to the new GIT Repository:
git add .

git commit -m ¨Initial commit.¨

6. Send new project to server.
git push –set-upstream git@git.informatik.uni-rostock.de:myAccount/myProject master

https://www.informatik.uni-rostock.de/it-service/ 7 October 19, 2021

Universität Rostock
Bereich Informatik

4.2 With GITLab examples

• Click on Projects on the top left side.
A menu appears.

• Click on your projects in the appearing menu.
The list of your projects appears.

• Click on new project on the right side.
The selection page for a new project appears.

https://www.informatik.uni-rostock.de/it-service/ 8 October 19, 2021

Universität Rostock
Bereich Informatik

• Click on Create blank project.

• Enter a name for your project in the box Project name.

• You may add a short description for your project in the box Project description.

• Activate the checkbox Initialize repository with a README, so you have a non-empty repository and
may check it out to your computer.

• Click on Create project.
The overview of your new project appears.
Next step is cloning your repository. (Chapter 5)

https://www.informatik.uni-rostock.de/it-service/ 9 October 19, 2021

Universität Rostock
Bereich Informatik

5 Clone a repository

• Open your project on https://git.informatik.uni-rostock.de.

• Click on Clone and copy the link below Clone with SSH.

• Open a terminal.

• Navigate to the folder where you want to store your repository.
cd my/favorite/repo/storage/directory

• In the command below replace git@git.informatik.uni-rostock.de:kristian/example-project.git with the link
you copied before. Execute the command.
git clone git@git.informatik.uni-rostock.de:example-user/example-project.git

If you are asked for a login then your SSH-key is missing in GITLab. Please follow the actions in Chapter 3
„Set up SSH keys“.

https://www.informatik.uni-rostock.de/it-service/ 10 October 19, 2021

https://git.informatik.uni-rostock.de

Universität Rostock
Bereich Informatik

6 Working with the repository

6.1 Workflow

During the work with a GIT repository usually one follows a workflow like this.

1. Load the newest changes from server. fetch / pull

2. If needed: change or crate a branch. checkout / branch

3. Add, change or remove files. add / remove

4. Commit changes: Add a meaningfull comment. commit

5. Send newest commits to server. push

6.2 Inspecting changes

• git status
Shows the local changes compared to the newest commit in the current branch.
Example:
[bob@earth ˜/myProject] (master)$ git status
On branch master
Your branch is up to date with ´origin/master´.

Changes not staged for commit:
(use ¨git add <file>...¨ to update what will be committed)
(use ¨git restore <file>...¨ to discard changes in working directory)

modified: main.c

no changes added to commit (use ¨git add¨ and/or ¨git commit -a¨)

• git log
Shows a list with the commits.
Example:
[bob@earth ˜/myProject] (master)$ git log
commit 1c5e59568e86377b620614f9e48250b4181fe9ab
Author: MySelf <my-self@my-server.de>
Date: Tue May 4 17:10:13 2021 +0200

Added Ackermann function.

commit 899efba3143f3c24fa9168c803f2caf5d4fe3974
Author: MySelf <my-self@my-server.de>
Date: Tue May 4 13:13:46 2021 +0200

First commit.

https://www.informatik.uni-rostock.de/it-service/ 11 October 19, 2021

Universität Rostock
Bereich Informatik

6.3 Update the working directory.

• git fetch

Loads the newest version of the repository from server but leaves the working directory as it is.

• git pull

Loads the newest version of the repository from server and updates the working directory.

• git checkout NAME
Updates your working copy according to NAME.

– If NAME is a name of a file in the repository, then this file will be replaced by the version in the newest
commit.

– If NAME is the ID of a commit, then all files will be replaced by their version in this commit. In the
example from git log from above:

git checkout 899efba3143f3c24fa9168c803f2caf5d4fe3974
Returns to the state of the commit with the title First commit.

– If NAME is a name of a branch, then all files will be replaced by their version in this branch. All following
commits will be added to this branch.

6.4 Working branch

You should use branches, if you develop a new feature or plan to do big changes. If you are done with your changes
and tested it successfully, you may merge it with your master branch.

• git branch
Shows the current and the available branches on this computer.

• git branch myNewFeature
Creates a new branch with the name myNewFeature. It contains a copy of all data from the current branch.

• git checkout myOtherNewFeature
Changes to the branch with the name myOtherNewFeature.

• git merge myNewFeature
Merges the branch myNewFeature in the current branch.

Example: The current branch is master. The new file example.c is to be created and the file main.c needs to be
edited.

[bob@earth ˜/myProject] (master)$ git pull
[bob@earth ˜/myProject] (master)$ git branch example
[bob@earth ˜/myProject] (example)$ vim example.c
[bob@earth ˜/myProject] (example)$ git add example.c
[bob@earth ˜/myProject] (example)$ vim main.c
[bob@earth ˜/myProject] (example)$ git add main.c
[bob@earth ˜/myProject] (example)$ git commit -m ¨Added new example function.¨
[bob@earth ˜/myProject] (example)$ git push

[bob@earth ˜/myProject] (example)$ git checkout master
[bob@earth ˜/myProject] (master)$ git pull
[bob@earth ˜/myProject] (master)$ git merge example
[bob@earth ˜/myProject] (master)$ git push

https://www.informatik.uni-rostock.de/it-service/ 12 October 19, 2021

Universität Rostock
Bereich Informatik

6.5 Changing things

• git add FILE_NAME
Adds the new or changed file FILE_NAME to the next commit.

• git add .
Adds all new or changed files in the current folder and all subfolder to the next commit.

• git rm FILE_NAME
Removes the file FILE_NAME from the working copy and marks it as deleted for the next commit.

• git commit
Saves the marked changes as a commit. It shows a text editor. In this editor you have to enter a comment for
this commit.

6.6 Sending changes to the server

After you have committed your changes, you should send your commits to the server:

git push

6.7 Removing a file out of the history

• Be sure that there is no open merge request.

• This command removes the file from your local history:
git filter-branch –force \

–index-filter ¨git rm –cached –ignore-unmatch FILE_NAME¨ \
–prune-empty –tag-name-filter cat – –all

• Add the file to your .gitignore file.
echo ¨FILE_NAME¨ >> .gitignore

git commit -m ¨Add FILE_NAME to .gitignore¨

• This command sends the changed History to the server.
git push origin –force –all

• Tell your collaborators to rebase, not merge, any branches they created off of your old (tainted) repository
history. One merge commit could reintroduce some or all of the tainted history that you just went to the
trouble of purging.
Details on topic „rebase“: https://git-scm.com/book/en/Git-Branching-Rebasing

• Additional information on the topic „remove data from the history“ you will find in:
https://docs.github.com/en/github/authenticating-to-github/
keeping-your-account-and-data-secure/removing-sensitive-data-from-a-repository

7 Contact

If you have questions or suggestions please send a mail to: stg-cs@uni-rostock.de

https://www.informatik.uni-rostock.de/it-service/ 13 October 19, 2021

https://git-scm.com/book/en/Git-Branching-Rebasing
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/removing-sensitive-data-from-a-repository
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/removing-sensitive-data-from-a-repository

	GIT?
	What is GIT?
	What not to store in in GIT
	Configure files managed by GIT
	Example: C Project
	Example: Tex Document

	Login
	Login with an account at informatik.uni-rostock.de
	Login with an external account

	Set up SSH keys
	Introducion
	Open the overview page
	Create an SSH key
	Add an SSH key
	Remove an SSH key

	Create new project
	Using the command line
	With GITLab examples

	Clone a repository
	Working with the repository
	Workflow
	Inspecting changes
	Update the working directory.
	Working branch
	Changing things
	Sending changes to the server
	Removing a file out of the history

	Contact

