
Enabling Efficient Agile Software Development
of NoSQL-backed Applications

Uta Störl1 Daniel Müller2 Meike Klettke3 Stefanie Scherzinger4

Abstract: NoSQL databases are popular in agile software development, where a frequently changing
database schema imposes challenges for the production database. In this demo, we present Darwin, a
middleware for systematic, tool-based support specifically designed for NoSQL database systems.
Darwin carries out schema evolution and data migration tasks. To the best of our knowledge, Darwin
is the first tool of its kind that supports both eager and lazy NoSQL data migration.

Keywords: NoSQL Databases, Schema Management

1 Introduction

In application development, software releases that also change the database schema are
a common scenario [?, ?]. Due to their schema-flexibility, NoSQL database systems are
very popular in such setups, especially with agile software development. However, an
outstanding challenge are situations where the structure of data already stored in the
production database no longer matches what the latest application code expects. Such
legacy data must be migrated. Today, many teams rely on custom-coded migration scripts,
which is expensive in terms of person hours, as well as error-prone. What is missing is a
tool-based support for an optional schema management in NoSQL database systems.

In [?], we discussed the need for a schema-management component capable of managing
the schema, schema evolution, as well as data migration within NoSQL database systems.
A first prototype called Darwin, designed according to these requirements, was sketched
in [?]. Now, we present a live demo of a significantly enhanced and extended version of
Darwin. The key contributions of this Darwin demo are:

∙ Darwin supports the complete schema management life cycle: Declaring an initial
schema, repeatedly applying schema changes, and migrating legacy data.

∙ Darwin features different options for carrying out data migration tasks. Developers
can choose a suitable approach for a given application development scenario.

∙ Darwin is implemented for different types of NoSQL database systems. A public
interface makes it easy to integrate further NoSQL database products.

1 Darmstadt University of Applied Sciences, uta.stoerl@h-da.de
2 Darmstadt University of Applied Sciences, daniel.n.mueller@stud.h-da.de
3 University of Rostock, meike.klettke@uni-rostock.de
4 OTH Regensburg, stefanie.scherzinger@oth-regensburg.de



2 Uta Störl, Daniel Müller, Meike Klettke and Stefanie Scherzinger

Fig. 1: The Darwin system architecture. Fig. 2: Darwin screenshot: Schema history.

2 Supporting Schema Management with Darwin

Darwin operates as middleware between the applications and the NoSQL database systems
(see Figure 1). Conceptually, Darwin can support any type of NoSQL database system.
Currently, the document stores MongoDB and Couchbase, as well as the column family
store Cassandra are supported. Darwin has a system-independent API (c.f. the Entity
Manager in Figure 1) that makes it easy to integrate other NoSQL systems. We next lay out
the schema management process and point out how Darwin supports each of its subtasks.

Initial Schema. We assume that an initial schema is available. As illustrated in Figure 3,
there are different ways to obtain this schema:

∙ The schema can be explicitly declared by the developers.5 The Darwin Web App (see
Figure 1) offers two options, either using the schema evolution language introduced
in [?], or a graphical interface.

∙ The schema may be implicitly derived from Object-NoSQL mappers such as Hiber-
nate or Kundera, or from class declarations within the application code.

∙ The schema may be extracted from data persisted in the NoSQL database in a reverse
engineering step. Darwin implements schema extraction as proposed in [?].

Schema Evolution. There are different strategies for declaring schema changes (illustrated
in Figure 3). Darwin uses the schema evolution language first proposed in [?]. Upon request,
Darwin can also visualize the schema history, as shown in Figure 2.

∙ The schema changes may be declared explicitly. Again, Darwin offers two options,
using the schema evolution language or a graphical interface. Figure 4 shows an
example of a copy operation, declared in the graphical interface. The property score

5 An explicitly declared schema is no longer uncommon even for schema-flexible NoSQL databases. For instance,
with recent versions of MongoDB, an optional schema may be registered [?].



Enabling Efficient Agile Software Development of NoSQL-backed Applications 3

Fig. 3: The schema management process end-to-end.

Fig. 4: Declaring a schema evolution operation using the graphical interface of Darwin.

is copied from each Player to the player’s Mission entities. Darwin then generates
the schema evolution operation accordingly:

copy Player.score to Mission where Player.id = Mission.pid.
∙ Another way is to implicitly derive schema evolution operations by analyzing changes

to the application code. Addressing this task is scheduled for future work.
∙ The third possibility is to incrementally maintain a schema: An initial schema is

extracted, and then maintained along with all updates to entities in the database. This
approach is also implemented within Darwin, based on ideas proposed in [?].

Data Migration. Darwin further supports two data migration strategies [?]:

∙ Darwin implements eager migration, where the entire legacy data is migrated as
a consequence of schema evolution. Eager migration can be explicitly initiated by
users of Darwin, or it can be declared as the default behaviour of Darwin.

∙ Darwin also implements lazy migration, where single entities are only migrated on
demand, when they are loaded by the application. This mechanism is triggered by
calls from the application code to the Darwin Persistence API.



4 Uta Störl, Daniel Müller, Meike Klettke and Stefanie Scherzinger

3 Demo Outline

Our demo shows how Darwin supports the schema management process end-to-end:

1. We start with schema extraction from synthetic gaming data persisted in the database.
2. Visitors of our demo may generate schema evolution operations using the graphical

interface (Figure 4) or declare changes in our schema evolution language. We cover
adding, removing, and renaming the properties of entities, as well as copying and
moving properties between different kinds of entities.

3. Afterwards, we inspect the schema history, as visualized in Figure 2.
4. We can interactively assess the impact of eager or lazy migration on the data instance.

4 Outlook

Our next step is to implement additional migration strategies besides eager and lazy
migration, to support a broad range of application needs [?]. We further work on detailed
cost models for data migration, to help developers choose the most suitable approach.

Acknowledgements: We thank O. Haller, T. Landmann, T. Lehwalder, K. Möchel, H. Nkwinchu, and
M. Richter from the Darmstadt University of Applied Sciences for implementation work on Darwin.


