
Curating Variational Data
in Application Development

Uta Störl, Daniel Müller
Darmstadt University of Applied Sciences, Germany

uta.stoerl@h-da.de

Alexander Tekleab, Stephane Tolale, Julian Stenzel
Darmstadt University of Applied Sciences, Germany

bdcc.fbi@h-da.de

Meike Klettke
University of Rostock, Germany
meike.klettke@uni-rostock.de

Stefanie Scherzinger
OTH Regensburg, Germany

stefanie.scherzinger@oth-regensburg.de

Abstract—Building applications for processing data lakes is
a software engineering challenge. We present Darwin, a mid-
dleware for applications that operate on variational data. This
concerns data with heterogeneous structure, usually stored within
a schema-flexible NoSQL database. Darwin assists application
developers in essential data and schema curation tasks: Upon
request, Darwin extracts a schema description, discovers the
history of schema versions, and proposes mappings between these
versions. Users of Darwin may interactively choose which map-
pings are most realistic. Darwin is further capable of rewriting
queries at runtime, to ensure that queries comply with legacy
data. Alternatively, Darwin can migrate legacy data to reduce
the structural heterogeneity. Using Darwin, developers may thus
evolve their data in sync with their code. In our hands-on demo,
we curate synthetic as well as real-life datasets.

Index Terms—NoSQL databases; schema evolution; schema
management; data migration; query rewriting; variational data

I. INTRODUCTION

With data accumulating in data lakes, there is a rejuvenated
interest in data governance for semi-structured and heteroge-
neous data. Recent research efforts on so-called variational
data [1] include the extraction of a schema description [2],
[3] or integrity constraints [4], or even handling multiple sets
of schemas when several applications require access [5].

In this paper, we focus on a specific scenario within this
context that agile developers are facing in their daily work,
namely an application evolving along several versions. This
brings about evolutionary changes in the structure of persisted
data, often as simple as added fields, but also involving more
complex changes.

For applications that need to be available 24/7, NoSQL
databases can be an appealing architectural choice: The new
version of the application can be deployed against the same
database that has also been serving the predecessor versions,
without application downtime due to database migration.

While the database now stores records that adhere to the
structure expected by the latest version of the application, it
also stores legacy records, created by some earlier version of
the application. Even though the database itself may not man-
age any schema (as the schema is implicit in the application
code), in its essence, this can be considered an instance of the
problem of schema evolution.

In this paper, we introduce Darwin, a middleware for Java
applications running against variational data, as stored in a
NoSQL database. Our production installation of Darwin is
running on 40 physical nodes with installations of Cassandra,
Couchbase, and MongoDB. Darwin assists software develop-
ers in a range of vital data curation tasks:

1) Extracting a comprehensive schema description.
2) Provided that persisted records are timestamped, restoring

a timeline of legacy schema versions. This reveals how
variation was introduced in the data.

3) Proposing mappings between legacy schema versions,
such as adding, removing, or renaming properties, as well
as copying or moving properties. In interaction with the
developers, Darwin restores the schema evolution history.

4) Given the restored schema evolution history, rewriting
queries at application runtime, ensuring that queries also
take into account legacy versions of the data.

5) Further, migrating legacy records to obtain a homoge-
neous data instance.

As a tool, Darwin enables application developers to focus
on writing new application code, rather than throw-away code
for curating variational data.1

II. DARWIN SYSTEM OVERVIEW

Figure 1 shows the system architecture of Darwin. Darwin
is a middleware between a Java application and a database
storing variational data:

• To the top of the application stack is the Java application.
It stores its data in a NoSQL database, interacting with
the system-independent Darwin Persistence API.

• Via the Darwin WebApp, application developers may
trigger data curation tasks directly.

• The Darwin Core REST API interfaces with the modules
for schema extraction, handling schema evolution, data
migration, and query rewriting.

We next describe the interplay of the components of Darwin
along the workflow sketched in Figure 2.

1While we have demoed an earlier version of Darwin [6], features (2)
through (4) above are new material. In particular, features (2) and (3) are
now partly automated, as opposed to being manually specified by the users.



Fig. 1. The Darwin system architecture.

Fig. 2. The interactive workflow for restoring the schema evolution history.

Step 1: The Schema Extraction Manager extracts schema
version graphs as comprehensive schema descriptions from
the data instance. It considers the complete data instance
when incrementally constructing an internal representation.
We merely sketch the basic idea using the toy data from
Figure 3, and refer to [7] for the details.

In extracting a schema, we assume that we are able to
identify which entities are instances of the same class of the
object-oriented application code. Depending on the NoSQL
data store and the overall software stack (e.g., the usage of an
object-NoSQL mapper), these entity types may be encoded
in different ways. For instance, a designated property can
specify the class identifier, or entities in the same collection
or table can belong to the same class. Figure 3 shows entities
of type Player and Mission in JSON format. Each entity
carries a unique id as well as a timestamp. The Mission
property pid references the Player currently pursuing this
mission. Among Missions, only the most recently persisted
Mission has a property score.

Figure 4 shows the derived schema version graphs. Each
root node is labelled with the entity type and lists the time-
stamps of all entities of this entity type. The graph further
contains a node for each property, recording data type and
hierarchy information, as well as the timestamps of all entities
carrying this property. For instance, the node for Mission
property title has the timestamp list [10, 14], whereas
the node for score has the timestamp list [14].

Step 2: The Schema Evolution Manager analyzes the
timeline inherent in the schema version graphs. It recognizes
schema versions and proposes schema evolution operations as
mappings between succeeding schema versions. We refer to
our companion paper [7] for details.

Darwin is able to derive single-type operations (such as
add, remove, and rename) affecting the properties of entities
of the same entity type. Comparing entities of different entity
types, Darwin can detect multi-type operations for copying and
moving properties between entity types. We have introduced
these operations in earlier work [8]. Darwin pre-formulates a
join condition for copy or move operations, and leaves it to
the user to specify the join predicate, as seen in Figure 5.

There may be alternative schema evolution operations map-
ping between schema versions. In our example, we detect
a new property score in entity type Mission at time-
stamp 14. This change may be described by an add operation,
or a copy operation from entity type Player, joining on
the player id. Darwin therefore compiles a decision table,
as shown in Figure 5, listing alternatives for the software
developers to choose from, as discussed next. After all, they
have the necessary domain knowledge to resolve ambiguities,
e.g., remembering how the software has evolved in the past.

Step 3: The software developers now resolve ambiguities
in the decision table. This yields a sequence of schema
evolution operations, describing the schema evolution history
and thus the lineage of the variational data.

Darwin visualizes this history in Figure 6: The JSON
schemas for Mission are shown in their two latest versions.
The changes w.r.t. the previous schema version are marked up
by a shaded background, e.g., Mission has a newly added
property score in the version shown to the right.

Taming variational data in a data lake is a big challenge
with dynamic requirements and heterogeneous applications.
The comprehensive view on the schema evolution history may
gain valuables insights for the developers already at this stage.

Notes on Performance and Scalability: Extracting and
analyzing the entire data instance is a one-time effort. After the
initial schema extraction, newly added entities can be analyzed
incrementally and on-the-fly.

In extracting schema version graphs and deriving candidate
mappings between schema versions, Darwin also proceeds
incrementally. Since Darwin does not load the entire data
instance into main memory, but only incremental batches [7],
Darwin may safely handle large volumes of data. Our produc-
tion installation of Darwin is running on the Big Data Cluster
at Darmstadt University of Applied Sciences, comprising 40
physical nodes with installations of the NoSQL databases
Cassandra, Couchbase, and MongoDB.

III. LEVERAGING THE SCHEMA EVOLUTION HISTORY

Having restored the schema evolution history, the software
developers may pursue two different strategies in curating
variational data with Darwin:

1) Leave the variational data as it is (e.g., due to compliance
reasons), and have Darwin rewrite queries at runtime to
account for the structural heterogeneity of the data.

2) Have Darwin migrate the variational data to a single,
homogeneous structure.

Both strategies allow the application developers to code against
the latest schema, without having to worry about variational



Fig. 3. Example: Variational data in a gaming application. Fig. 4. Example: Schema version graphs for Player and Mission.

data. We briefly sketch these approaches.
Query Rewriting: With the first approach, the database

stores variational data, yet the application developers write
code as if all records adhere to a global (virtual) schema.
Provided that queries are simple enough, queries can be
automatically rewritten by Darwin such that they account for
the structural variations in legacy data. To this end, we have
adapted the approach from [9], based on the Chase algorithm,
for selection and projection queries.

Let us illustrate this with a simple example. The application
issues a query that assumes the latest schema, where all
Mission entities carry a score property:
select title from Mission
where score > 10

Darwin has detected that starting with timestamp 14, score
properties are copies from the Player owning the mission.
The query is now automatically rewritten:2
(select title from Mission
where score > 10 and ts >= 14)
union
(select title from Mission M, Player P
where P.score > 10 and P.id = M.pid and M.ts < 14)

Data Migration: Alternatively, developers may migrate
the data to adhere to a single schema: Since Darwin is aware
of the historical schema versions, as well as the sequence of
mappings, Darwin can reliably carry out the required steps.

IV. DEMONSTRATION SCENARIO

Our demo follows the workflow outlined in Figure 2 and
walks through the steps that software developers may take
from there, as sketched in Section III. We have prepared
several datasets containing versioned data to illustrate different
challenges. Besides the synthetic gaming data used in this
paper, we also present biological data with observations of
species in the Baltic sea [7], and real world configuration data
from the Wendelstein 7-X plasma experiments [2], [10].

Restoring the Schema Evolution History: First, we select
and register the data source in the Darwin WebApp. We let
Darwin extract the schema versions and propose candidate
evolution operations. The developers then interactively resolve

2We show a simplified query: Rather than selecting on timestamps, Darwin
filters on a Darwin-internal version property. This property is annotated by
Darwin during reconstruction of the schema evolution history.

Fig. 5. Darwin screenshot: Software developers interactively resolve ambi-
guities via the decision table and edit the join condition for a copy operation.

Fig. 6. Darwin screenshot: Showing two versions of Mission side by side,
in JSON schema notation. The schema evolution operations are stated above.
Changes w.r.t. the previous schema version are highlighted.

any ambiguities. Figure 5 shows a screenshot of Darwin with
the alternative schema evolution operations add and copy from
our running example. The user of the Darwin WebApp is
editing the join condition for the copy operation.

Visualizing the Schema Evolution History: Now we can
browse the schema evolution history, as seen in Figure 6.

Data Inspection: We may also sample data from the
database, to examine its structural heterogeneity. Figure 7
shows Mission entities in versions 5 and 11.

Query Rewriting: In the Darwin WebApp, we issue ad-
hoc queries that assume that the entire data instance adheres
to the latest schema. For instance, we assume that Missions
carry a property score. We inspect the rewritten queries as
well as the results of evaluating them on the variational data.

Data Migration: Darwin can carry out data migration to
reconcile all entities with the schema expected by the latest



Fig. 7. Darwin screenshot: Sampled entities of type Mission with
heterogeneous structure.

Fig. 8. Darwin screenshot: Configuring data migration upon a few clicks,
rather than having developers write low-level data curation scripts.

Fig. 9. Darwin screenshot: After data migration, the sampled entities of type
Mission no longer display structural variations.

application release. Figure 8 shows the interactive GUI for
configuring a data migration task. As we can see in Figure 9,
as a result of migration, all Mission entities shown are in the
latest version 11. We have highlighted the changed properties.
In particular, the Mission entity with id = 42 now has a
score property, copied from its Player.

V. RECENT RELATED WORK

There is a large body of related work, and given the page
limitations, we cherry pick from the most recent contributions.

Extracting a schema and constraints from unstructured data
(in particular, XML) has been studied intensively. For handling
big data, the need for highly scalable solutions has inspired
new contributions e.g. [2]–[4], [11], [12].

Handling versions of a schema, even for several applications
requesting access, has been recently proclaimed a highly
relevant research area [5]. Similarly, the authors in [1] stress
the need for dedicated databases to handle variational data.
With Darwin, we do not pitch a new kind of database system,
but instead a powerful middleware for application developers
to use. This leaves it up to the developers to choose among
the Darwin-supported off-the-shelf NoSQL database products
(currently Cassandra, Couchbase, and MongoDB).

The authors in [13] also address variational data, yet within
the relational model. Their strategy is to migrate data back
and forth between schema versions (rather than performing
traditional Chase-based query rewriting), allowing both reads
and even writes to data in legacy schemas.

One of the prominent systems tackling schema evolution
in relational databases by query rewriting has been made to
work by [9]. Our approach leans on these ideas designed for

relational databases, and extends them to handling hierarchical
data. We plan to publish the details in a future paper.

While we find several connections to related work (espe-
cially given the long-standing history of schema evolution
research [14]), the workflow presented in this demo is novel:
Darwin is the first system to implement this end-to-end support
for curating variational data in agile application development.

VI. CONCLUSION

We presented Darwin, a middleware that assists application
developers in curating variational data. Using Darwin, devel-
opers can not only extract a schema, but also reconstruct a
plausible schema evolution history. This already can contribute
new insights. The developers may further choose to have
Darwin rewrite queries at run-time, to account for variational
data, or they may homogenize their data instance.

This kind of tool support frees up time, so that the devel-
opers may focus on implementing new application features,
rather than writing low-level data curation scripts. Tools like
Darwin can thus substantially simplify the long-term mainte-
nance of variational data gathering in data lakes.

ACKNOWLEDGEMENTS

This project was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation), grant #385808805.

We thank O. Haller, T. Landmann, T. Lehwalder, K. Möchel,
H. Nkwinchu, M. Richter, and M. Shenavai from Darmstadt Univer-
sity of Applied Sciences for contributing to the Darwin code base.

REFERENCES

[1] P. Ataei, A. Termehchy, and E. Walkingshaw, “Variational Databases,”
in Proc. DBPL’17, 2017.

[2] M. Klettke, U. Störl, and S. Scherzinger, “Schema Extraction and
Structural Outlier Detection for JSON-based NoSQL Data Stores,” in
Proc. BTW’15, 2015.

[3] M.-A. Baazizi, G. G. Dario Colazzo, and C. Sartiani, “Counting Types
for Massive JSON Datasets,” in Proc. DBPL’17, 2017.

[4] M. Farid, A. Roatis, I. F. Ilyas, H.-F. Hoffmann, and X. Chu, “CLAMS:
Bringing Quality to Data Lakes,” in Proc. SIGMOD ’16, 2016.

[5] B. Chandramouli, J. Gehrke, J. Goldstein, D. Kossmann, J. J. Levan-
doski, R. Marroquin, and W. Xie, “READY: Completeness is in the Eye
of the Beholder,” in Proc. CIDR’17, 2017.

[6] U. Störl, D. Müller, M. Klettke, and S. Scherzinger, “Enabling Efficient
Agile Software Development of NoSQL-backed Applications,” in Proc.
BTW’17, 2017.

[7] M. Klettke, H. Awolin, U. Störl, D. Müller, and S. Scherzinger, “Uncov-
ering the Evolution History of Data Lakes,” in Proc. SCDM’17, 2017.

[8] S. Scherzinger, U. Störl, and M. Klettke, “Managing Schema Evolution
in NoSQL Data Stores,” in Proc. DBPL’13, 2013.

[9] H. J. Moon, C. A. Curino, and C. Zaniolo, “Scalable Architecture and
Query Optimization for Transaction-time DBs with Evolving Schemas,”
in Proc. SIGMOD’10, 2010.

[10] A. Spring, M. Lewerentz, T. Bluhm, P. Heimann, C. Hennig et al., “A
W7-X experiment program editor - A usage driven development,” in
Proc. 8th IAEA Technical Meeting on Control, Data Acquisition, and
Remote Participation for Fusion Research, 2012.

[11] S. Cebiric, F. Goasdoué, and I. Manolescu, “Query-oriented summariza-
tion of RDF graphs,” PVLDB, vol. 8, no. 12, 2015.

[12] L. Wang, S. Zhang, J. Shi, L. Jiao et al., “Schema Management for
Document Stores,” Proc. VLDB Endow., vol. 8, no. 9, May 2015.

[13] K. Herrmann, H. Voigt, J. Rausch, A. Behrend, and W. Lehner, “Living
in Parallel Realities – Co-Existing Schema Versions with a Bidirectional
Database Evolution Language,” in Proc. SIGMOD’17, 5 2017.

[14] J. F. Roddick, “A survey of schema versioning issues for database
systems,” Information & Software Technology, vol. 37, no. 7, 1995.


