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Abstract: Although most NoSQL Data Stores are schema-less, information on the
structural properties of the persisted data is nevertheless essential during application
development. Otherwise, accessing the data becomes simply impractical.
In this paper, we introduce an algorithm for schema extraction that is operating outside
of the NoSQL data store. Our method is specifically targeted at semi-structured data
persisted in NoSQL stores, e.g., in JSON format. Rather than designing the schema
up front, extracting a schema in hindsight can be seen as a reverse-engineering step.
Based on the extracted schema information, we propose set of similarity measures that
capture the degree of heterogeneity of JSON data and which reveal structural outliers
in the data. We evaluate our implementation on two real-life datasets: a database from
the Wendelstein 7-X project and Web Performance Data.

1 Introduction

Most NoSQL data stores do not enforce any interesting structural constraints on the data
stored. Instead, the persisted data often has only implicit structural information, e.g., in
NoSQL document stores that manage collections of JSON documents. Yet when access-
ing this data programmatically, it is vital to have some reliable notion of its structure, or
schema. This holds for traditional application development, as well as when analyzing
large scientific data sets: Without knowing the general structure of the data, and in partic-
ular its structural outliers, it becomes virtually impossible to do any pragmatic application
development or meaningful data analysis. Yet when working with NoSQL data stores, the
schema is frequently unknown, either due to rapid schema evolution in agile development,
or, as we will show, when a scientific database contains data from different experiments.

NoSQL data stores excel at handling big volumes of data, and schema-less stores in par-
ticular are frequently chosen to manage data with a high degree of structural variety.

For instance, let us assume a startup releasing a blogging software. The JSON documents
from Figure 1 have been persisted by two different versions of the application. In between
the release producing the document in Figure 1(a) and the document in (b), the property
likes has been dropped, and the functionality to comment on blogs has been added.

With the software-as-a-service model, it is common that applications are re-released into
the cloud on a weekly, if not daily basis. In such settings, NoSQL data stores are particu-



{"_id": 7,
"title": "NoSQL Data Modeling

Techniques",
"content": "NoSQL databases ...",
"author": "Alice",
"date": "2014-01-22",
"likes": 34
}

{"_id": 97,
"kind": "BlogPost",
"title": "NoSQL Schema Design",
"content": "Schema-flexibility ...",
"author": "Bob",
"date": "2014-02-24",
"comments": [
{ "commentContent": "Not sure...",
"commentDate": "2014-02-24" },

{ "commentContent": "Let me mention ...",
"commentDate": "2014-02-26" } ] }

(a) First-generation blogpost (b) Second-generation blogpost

Figure 1: The structure of persisted JSON documents changes due to software- and schema evolu-
tion. Schema-free NoSQL data stores allow for heterogeneous documents to co-exist

larly popular back ends for data storage, since their schema-flexibility allows for heteroge-
neous data to co-exist. After all, most NoSQL data stores do not maintain a data dictionary
and thus do not actively manage the schema of the data. This makes it unnecessary to mi-
grate the persisted data with each new release of the software. At the same time, the
complexity of handling heterogeneously structured data is building up [KSS14, SKS13].

When developers access heterogeneous data programmatically, it is vital to have some
reliable notion of its schema. Let us emphasize on this point for different use cases:

• To build an interactive web application that reads and writes persisted data, e.g., a
Java application using object mappers, developers need object mapper class defini-
tions that robustly match blogpost documents from both generations. [SHKS15]
• Many NoSQL data stores provide a declarative query language. To formulate queries,

developers need to know which attributes are present (or absent) in persisted objects.
• For OLAP-style data analysis, e.g., in the form of MapReduce jobs, developers also

need to know which structure to expect when parsing JSON documents.

Thus, any pragmatic approach to these tasks requires some form of schema description.
Figure 2 shows an instance of such a description in JSON schema [JSO14]. This specifica-
tion matches both generations of blogposts in Figure 1, provides type information as well
as information on the nesting of properties, and denotes which properties are required.

Out of this motivation, we present a new schema extraction approach that is custom-
tailored to working with JSON documents. Our algorithm builds upon ideas proposed
for extracting DTDs from collections of XML documents [MLN00], but takes into ac-
count the particularities of JSON data, such as the unordered nature of JSON documents
(unlike XML, where the order of elements plays an essential role) and measures describ-
ing the structural heterogeneity of a set of JSON documents. Our algorithm outputs a
JSON schema declaration. This declaration can then be the basis for providing convenient
programmatic access to the persisted data, e.g.,

• by generating type provider libraries that allow convenient access to structured data



{ "type": "object",
"properties": {

"_id": { "type": "integer" },
"title": { "type": "string" },
"content": { "type": "string" },
...
"comments": { "type": "array",

"items": { "type": "object",
"properties": {

"commentContent": { "type": "string" },
"commentDate": { "type": "string" } }

"required": ["commentContent", "commentDate"] } } }
"required": ["title", "content", "author", "date"] }

Figure 2: A JSON schema declaration for blogpost data

from within integrated development environments [SBT+12].
• by generating a hierarchy of object mapper class declarations, e.g., JPA [Jav09] or

JDO [Jav03] Java class declarations, to be used in application development, or
• to generate validating JSON parsers directly from the JSON schema, in the tradition

of parser generators and validating XML parsers.

The extracted JSON schema is an explicit schema. Our algorithm uses an internal graph
structure that summarizes all structure variants encountered in the data. This allows us
to also detect structural outliers (patterns that occur only in few data sets and might even
be due to a errors during recording of the data). Further, we can determine the degree of
coverage of the documents, a similarity measure capturing the structural homogeneity of
a document collection.

In earlier work, we have proposed a database-external schema management component, a
layer used on top of a NoSQL data store [KSS14]. This layer is to preserve the flexibility
of the NoSQL data store, while at the same time making it possible to detect and correct
structural inconsistencies in the data. The schema extraction algorithm, as presented in
this paper, is a vital building block towards this vision.

Structure. This article is organized as follows: The next section gives an overview on
different classes of NoSQL data stores. In Section 3, we formalize NoSQL documents and
JSON schema, a schema language that is currently under discussion in the community.
We present our schema extraction algorithm based on the Structure Identification Graph
(SG) in Section 4. We detect structural outliers in the data (Section 4.5), and introduce
similarity measures in Section 4.6. Since SGs can become too large to fit in memory,
we propose an alternative approach that uses a Reduced Structure Identification Graph
(RG) in section 5. We conduct our experiments on real-world data. The main results are
provided in Section 6. The article concludes with an outlook on how the schema extraction
can be implemented as part of a holistic schema management component.



2 NoSQL Data Stores

NoSQL data stores vary hugely in terms of their data and query model, scalability, archi-
tecture, and persistence design. The most common and for our context best suited cate-
gorization is by data model. Therefore we distinguish key-value stores, document stores,
and extensible record stores [Cat10,Tiw11]. Often, extensible record stores are also called
wide column stores or column family stores.

Key-value stores persist pairs of a unique key and an opaque value. There is no concept
of schema beyond distinguishing keys and values. Therefore, applications modifying the
data have to maintain the structural constraints and therefore also the schema.

Document stores also persist key-value pairs, yet the values are structured as “docu-
ments”. This term connotes loosely structured sets of name-value pairs, typically in JSON
(JavaScript Object Notation) [Ecm13] format or the binary representation BSON, a more
type-rich format. Name-value pairs represent the properties of data objects. Names are
unique within a document, and name-value pairs are also referred to as key-value pairs.

Documents are hierarchical, so values may not only be scalar values or lists, but even
nested documents. Documents within the same document store may differ in their struc-
ture, since there is no fixed schema. If a document store is schema-less, documents may
effortlessly evolve in structure over time: Properties can be added or removed from a
particular document without affecting the remaining documents.

Extensible record stores actually provide a loosely defined schema. Data is stored as
records. A schema defines families of properties, and new properties can be added within
a property family on a per-record basis. (Properties and property families are often also
referred to as columns and column families.)

Typically, the schema cannot be defined up front and extensible record stores allow the
ad-hoc creation of new properties. The Cassandra system [Tiw11, Apa13] is an exception
among extensible record stores, since it is much more restrictive regarding schema. Prop-
erties are actually defined up front, even with a “create table” statement, and the schema
is altered globally with an “alter table” statement.

NoSQL Data Stores in Scope of this Paper. Data in document stores is often repre-
sented in JSON format. This format contains implicit structural information and is an
interesting starting-point for schema extraction. Therefore, the schema extraction meth-
ods we present in this paper primarily focus on JSON-based document stores. Schema
extraction can also be applied to extensible record stores due to their concept of explicitly
naming properties and property families. The approach presented in this paper can easily
be transferred to extensible record stores. Since key-value stores are not aware of schema
apart from distinguishing keys and values, we believe they are not in the main focus for
schema extraction. However, data in key-value stores may also be stored in JSON or a
similar format. Then, schema extraction may also be applied to key-value stores.



3 JSON Documents and JSON Schema

Several NoSQL databases store JSON documents. In JSON the entities are called objects.
Objects are unordered enumeration of properties, consisting of name/value pairs [Ecm13].
The available basic data types are number, string, and boolean. JSON properties can be
multi-valued, these structures are then called arrays. Arrays are ordered lists of values,
written in square brackets and separated by commas.

Schema for NoSQL Data Stores. For declaring a schema and validating data against
a schema, we need an explicit schema description. Since we do not want to propose our
own language, resort to an already available schema description language: JSON Schema
[JSO14] defines structural constraints on sets of JSON objects.

In this article, we do not introduce the complete schema language. Instead, we provide
some intuition using a small example in Figure 2. An object blogpost is represented
by the properties title, content, author, date, likes, and comments.
These properties are listed, the type of each property is defined. All required properties
are enumerated, all other properties that are defined in the schema are optional. In the
schema in Figure 2, the properties likes and comments are optional. The property
comments is defined as an array, consisting of objects. Within the objects the properties
commentContent and commentDate occur. Both properties are enumerated in the
list of required properties that is given within the definition of the comments. The schema
in Figure 2 uses the JSON data types string, array, and object. It even contains
a hierarchical nesting of objects. In the following, we derive a JSON schema from a
collection of JSON documents.

4 Schema Extraction with a Structure Identification Graph (SG)

In this chapter, we introduce our method for schema extraction from a collection of JSON
documents. Our approach is related to existing work on DTD extraction from XML docu-
ments [MLN00]. Figure 3 states the sub-tasks of our extraction approach.

A graph data structure summarizes the structural information of all persisted documents.
The nodes represent JSON properties, nested objects, or arrays, and the edges capture the
hierarchical structure of the JSON documents. In particular, nodes and edges are labeled
with lineage information, i.e. lists that specify in which JSON documents the structural
property is present. The graph structure will be defined in Section 4.2 in detail and the
construction of the graph will be described in Section 4.4.



Figure 3: The sub-tasks of schema extraction

4.1 Document Selection

Our schema extraction algorithm derives an explicit schema from a collection of JSON
documents. In a preselection step, we choose to run the schema extraction on either the
complete collection or selected subsets of JSON documents.

There are several use cases motivating this document preselection step:

• It may be of interest to divide the collection of JSON documents into groups (dis-
tinguished by date, timestamp, or version number), and then extract the schema for
each group or version. This can reveal the evolution of the schema over time.
• If a split attribute exists that can be applied for distinguishing the JSON documents

of a collection, then we can build schema for a subset of documents. We can, for
instance, distinguish documents from different servers, from different geographical
places, or documents that describe different kinds of devices.

In summary, we preselect a NoSQL subset if different kinds of JSON documents are orga-
nized in the same collection. In all cases, the preprocessing can be done if a JSON property
or property set for selecting a subset exists.



4.2 Definition of the Structure Identification Graph (SG)

We now define our internal graph data structure for schema extraction, with node and edge
labels that capture the complete schema structure. Our schema extraction algorithm in
Section 4.4 is based on this graph. The schema information from all JSON documents of a
Collection or subset of a Collection is stored in a so-called Structure Identification Graph.

Definition 3: A Structure Identification Graph SG = (V,E) is a directed graph where

• V is a finite set of vertices or nodes. Each node vi ∈ V is represented by a tuple
(nodeLabeli, nodeIDListi) where

– nodeLabeli is a name of the node, composed by

∗ pathi, the path information starting from the document root and
∗ namei, the identifier of vi which contains the property name

– nodeIDListi is a list of nodeIDs, that specifies in which JSON documents a
node vi occurs. A nodeID is constructed by docIDj : i where

∗ docIDj is the ID of the JSON document Jj within a Collection C
∗ i is a unique node number within the JSON document

• E ⊆ V × V is a set of directed edges or arcs of SG with

– e ∈ E is represented by a tuple (vk, vl, IDListl), with vk, vl ∈ V , and vk 6=
vl. IDListl is a list of nodeIDs. It specifies for a node vl under which parent
vk it occurs.

4.3 Example for JSON Schema Extraction

In the following, we provide an example. In a blogpost application, we assume the two
entities (JSON documents) from Figure 1. The structure representation of the blogpost
documents is shown in Figure 4(a). We assign unique node numbers in preorder. This
simple numbering scheme is sufficient here, because the numbers only serve to identify
the components during schema extraction. We assume that the JSON documents are not
changed during schema extraction.

We want to derive the structure identification graph SG that represents the structure of all
entities. For the JSON documents in Figure 4, we construct the SG in Figure 5. Same
structures in the original data are summarized in SG. The node and edge labels reference
the nodes from the input data. We next provide detailed algorithm for constructing an SG.

4.4 Schema Extraction Algorithm

We next describe the algorithm for constructing the SG when processing JSON docu-
ments. As we have pointed out in Section 2, our approach may be extended to work with



(a) JSON document with key 7

(b) JSON document with key 97

Figure 4: Structure representation of the entities blogpost from Figure 1

extensible record stores as well.

Construction of the Structure Identification Graph SG. First, we build the SG from
the input data of the NoSQL database. The nodes in the JSON documents are traversed and
numbered in preorder. For each node of the input data, an adding or extending of a node
in SG addNode and an adding or extending of an edge from the node to its parent node
addEdge is performed. The node numbers specify in which order the SG is constructed.

input data: JSON document collection C
initialize SG: V = ∅; E = ∅;
foreach Jx ∈ C do:

i = 0; // initialize counter
// storing the root node of the JSON document
SG.addNode(Jx, ∅, rootname, i);
i=i+1;
foreach /pathj/namej ∈ Jx do:
SG.addNode(Jx, pathi, namei, i);
p= Jx.getID(pathi);
SG.addEdge(Jx, pathi, namei, p)
i=i+1;

When a node is added, we distinguish two cases: if the node does not yet exist in the SG,
we add the node. The node is stored with a node name and with a list that contains only
one reference: the docID of the current node and the unique node number i. If the node
already exists in the SG (since the same node occurred in some other input document)
then the current node information is appended to the list that is stored with the node.



Figure 5: Structure identification graph for the sample entities

def SG.addNode(Jx, pathi, namei, i):
if (/pathi/namei) ∈ SG:
V : (/pathi/namei, list) −→ (/pathi/namei, list + Jx.getDocID(): i)

else
V := V ∪ (/pathi/namei, [Jx.getDocID() : i])

Adding an edge is similar. If the edge does not yet exists in the SG, it is added, otherwise
the edge list is updated by appending the docID and the unique node number p of the
parent node.

def SG.addEdge(Jx, pathi, namei, p):
if (/pathi/namei) ∈ SG:
E : (/pathi, /pathi/namei, list) −→ (/pathi, /pathi/namei, list + Jx.getDocID(): p)

else
E := E ∪ (/pathi/namei, Jx.getDocID(): p])

The traversal of the JSON documents in preorder ensures that the parent nodes are pro-
cessed before their children.

Schema extraction. In the next step, we derive the JSON schema from the SG.

input data: SG - Structure Identification Graph
foreach /pathi/nodei ∈ SG do:

generate JSON description for nodei;
if (SG.getNodeList(pathi).length() == SG.getEdgeList(pathi, namei).length()):
/pathi/nodei is required

else:
/pathi/nodei is optional

We give an example illustrating required and optional nodes. In the edge lists, only those
IDs occur that are also available in the parent node lists. Furthermore, each ID in the



node and edge lists is unique (because it is a combination of the documentID and a unique
nodeID). So each ID can occur in the node and edge lists at least once. Combining these
two facts, we can conclude: if the lists coincide (then the list lengths are identical), the
property is required. In Figure 6, the property title is required because the edge list and
the node list of the parent node coincide. If the edge list contain fewer IDs than the parent
node list then the property is optional. An example for that case is the property likes in
Figure 6. It is optional because the edge list is a subset of the parent node list and the list
length of the edge list is smaller than the list length of the parent node list.

Since the calculation of the list length is more efficient than the comparison of the complete
edge and parent node lists, it is used in the algorithm given above.

Figure 6: Required and optional properties in the structure identification graph SG

Finding the type of schema components. The above algorithm introduces the general
idea of schema extraction from JSON documents. Its implementation is slightly more
involved, since it additionally derives the data type (string, number, boolean, array, or
object) of each schema component from the input JSON documents. This type information
is also stored in the nodes of the schema identification graph SG.
If in the input instances the same properties with different data types exist, a union data
type, for instance "oneOf":[{"type":"string"},{"type":"integer"}] is
stored in the JSON schema.

4.5 Detection of Structural Outliers

The previous section described the JSON schema generation from the structure identifi-
cation graph. The graph with its nodes, edges, node labels, and edge labels delivers even
more information than merely a valid schema. We can use it to derive statistics, to find out-
liers in the data, and to calculate measures that capture how regular the documents within
a JSON collection are. Figure 7 visualizes these subtasks within the overall workflow.

Adding statistics to a JSON schema. Adding statistics during JSON schema extraction
is a straightforward extension. For each component of the schema, we can record the
information how often this component occurred in relationship to its parent node. This
information can also be derived from the SG. In our example from Figure 5, the property
likes occurred in 50 % of the JSON documents. The information can be helpful to



Figure 7: Schema extraction, detection of outliers, and calculation of measures

understand the input data.

Errors and Outliers in NoSQL Databases. Before we start with the outlier detection,
we want to motivate why errors or outliers frequently occur in NoSQL databases. The
main reason is that most NoSQL database systems do not check any structural constraints,
so all well-formed JSON documents can be stored. Often, the data is collected over long
periods of time. Different applications and different users have added and changed data.
The lack of schema management tools makes it difficult to detect data containing errors or
diverging property names.

For this reason, we are looking for structural outliers (that could be errors) with our
method. Within our algorithm we cannot distinguish between

• structures that only occur rarely (schema divergences) and
• actual errors in the NoSQL data.

Deciding whether a finding is correct or an error requires user interaction. We auto-
matically suggest candidates, but the final error classification remains a task for the user.

Detecting outliers in NoSQL data. With the structure identification graph SG, we can
find all structural outliers, i.e., all variants that are under a given threshold ε. It delivers
two kinds of outliers:

1. Additional properties. We can derive which properties exist only in some JSON
documents (in less than ε (in %) of the documents). The list of these properties is



determined by calculating for each v ∈ V :

edgeList= SG.getEdgeList(/pathi, /pathi/namei)
parentList = SG.getNodeList(/pathi)

If
|edgeList|
|parentList|

∗ 100 < ε then a node only occurs rarely. JSON documents that

contain this node are outliers. outliers = edgeList delivers references to all JSON
documents that contain the node. Figure 8(a) shows an example.

2. Missing properties. Another kind of structural outliers that we can find with the SG
are missing properties. If a property occurs in nearly all data sets and is only missing

in some JSON documents (
|edgeList|
|parentList|

∗ 100 > 100− ε)

then we obtain the list of outliers as outliers = parentList − edgeList. Figure
8(b) shows an example.

In the running example consisting only of 2 documents, we cannot detect outliers, because
the example does not contain enough documents. We therefore extend the sample structure
identification graph SG and represent both cases in Figure 8.

(a) Additional components (b) Missing components

Figure 8: Finding outliers in the structure identification graph SG

With a semiautomatic approach, the user can decide whether the structure is correct and
whether it shall be considered in the schema representation. Otherwise, the user decides
that a property shall not considered in the target schema and classifies the corresponding
JSON documents as errors. We do not need to touch the stored NoSQL database again,
the information which data sets are incorrect can be derived from the SG.

In summary, our approach does not support automatic cleaning and correction of the data,
to avoid information loss.

4.6 Measures for Variability

In this section, we introduce and calculate measures for the degree of coverage of the
JSON documents, that capture the structural homogeneity of a document collection.

Let’s start with some definitions. Each property in a JSON document Ji can be addressed
by a complete path expression, starting from the root. A property pk = /pathk/namek ∈
Ji if the property with the specified path and name is available in Ji.



The document size |Ji| is defined as the total number of properties in a JSON document.

The common properties of two JSON documents Ji and Jj are defined as follows:

Ji ∩ Jj = {pk | pk ∈ Ji, pk ∈ Jj} (1)

Degree of coverage. We further define the degree of coverage between two JSON doc-
uments Ji and Jj .

cov(Ji, Jj) =
1

2
· |Ji ∩ Jj |
|Ji|

+
1

2
· |Ji ∩ Jj |
|Jj |

(2)

The coverage specifies the overlap of two documents. It delivers a value between 0 and 1
that captures the structural similarity of two documents. We can generalize the coverage
definition for an arbitrary subset Ji..Jk of k JSON documents:

cov(J1..Jk) =
1

k
·

k∑
i=1

|
⋂k

j=1 Jj |
|Ji|

(3)

This measure considers the coverage of the documents J1..Jk of a collection C. It can
efficiently be calculated. If the cov value is 0 the JSON documents are completely hetero-
geneous, if the value is 1 then all documents have exactly the same structure. A disadvan-
tage is that this measure is strongly influenced by a few JSON documents, even one JSON
document with divergent structure changes the result. Other measures, for instance the
Jaccard coefficient often used for determining the similiarity has the same disadvantage.

jac(J1..Jk) =

⋂k
j=1 Jj⋃k
j=1 Jj

(4)

One JSON document with divergent structure can cause that the Jaccard measure delivers
the value 0.

As an alternative, it is possible to introduce a more sophisticated measure that considers all
subsets S of a JSON collection C= J1..Jn with at least 2 documents. With |S| the number
of documents in a subset S and |M | the size of M , we can now calculate:

M = {S|S ⊆ (J1..Jn), |S| >= 2} (5)

covsub(J1...Jn) =
1

|M |
·
∑
S∈M

cov(S) (6)



This measure delivers better results especially for collections that are homogeneous and
contain only one or a few JSON documents that feature another structure. An disadvantage
is that this measure cannot be efficiently calculated for large collections.

That’s why we proceed with the simpler coverage measure (Formula 3), and define on it
the supplement of each JSON document Ji within a JSON collection C = J1..Jn.

sup(Ji, C) =
|Ji| − |

⋂n
j=1 Jj |

|Ji|
(7)

Required and optional schema components. We consider properties that occur in all
JSON documents J1..Jn of a collection C required properties. Properties are optional if
they occur in at least one, but not in all JSON documents of a collection C.

req(C) = {p | ∀Ji ∈ C : p ∈ Ji} (8)

opt(C) = {p | ∃Ji, Jj ∈ C : p ∈ Ji ∧ p /∈ Jj} (9)

In JSON documents with a homogeneous structure, most properties are required. Hetero-
geneous JSON documents mainly have optional properties. These characteristics are also
reflected in the schemas of the JSON document collections.

We want to determine the degree of coverage with Formula (3) for our running example
from Figure 1.

cov(Ji, Jj) =
1

2
· |Ji ∩ Jj |
|Ji|

+
1

2
· |Ji ∩ Jj |
|Jj |

=
1

2
· 5
6
+

1

2
· 5
12

= 0.625 (10)

The degree of coverage can be calculated in parallel to the schema extraction.
n⋂

j=1

Jj can

be derived by traversing SG. The counting of the properties of each JSON document |Ji|
and storage of this number is an easy-to-realize extension of the algorithm.

5 Reduced Structure Identification Graph (RG)

We also have implemented a second variant of the schema extraction approach that uses a
Reduced Structure Identification Graph (RG). We have seen in Section 4 that the schema
extraction algorithm does only base on the node and edge lists lengths (not on the list
elements). In this variant, the graph does not contain references to the original JSON



Figure 9: Reduced structure identification graph (RG) for the blogpost application

documents, we only count the number of occurrences and store it for each node of the
graph. Figure 9 shows RG for the running example.

We can introduce this reduced structure (in contrast to the original approach [MLN00])
because JSON documents are more simple in structure than XML documents. Let’s take
a small XML example for illustrating it (figure 10):

<book>
<author> .. </author>
<author> .. </author>
<title> .. </title>
...

</book>

<book>
<editor> .. </editor>
<title> .. </title>
...

</book>

Figure 10: Sample XML documents

If we would count the occurring elements in both XML documents then we would get
the result that book, title and author occur twice. The elements book and title
are required in our small example, but author is optional, because the element is not
available in the second XML-document. So, in XML the number of occurrences is not
sufficient to find out the required and optional elements. In contrast, in JSON documents,
each property (with its complete path) is unique in the JSON documents. The number
of occurrences corresponds with the number of JSON documents containing the specified
property.

That’s why, we can use the simpler graph structure RG for the JSON schema extraction
algorithm. With this data structure, we can derive the schema, we also can determine
statistics and we can derive the coverage value. It is not possible to determine outliers
with the data structure. The table in Figure 11 compares both alternatives of the schema
extraction algorithm.

(*) Also in this variant, it is possible to detect outliers. From the JSON schema and addi-
tional statistics, we can derive which properties pi occur only rarely (< ε). In the next step,
we query the original JSON data set and find out the documents that contain the property
pi. In MongoDB, for example, we can execute the following query:



Structure Identification Reduced Structure
Graph (SG) Identification Graph (RG)

JSON Schema Extraction + +
Document Statistics + +
Similarity Measures + +
Outlier Detection + - (*)

Figure 11: Comparison of the structure extraction and outlier finding with a structure identification
graph SG and a reduced structure identification graph RG

db.collection.find({pi: {$exists: true}})

If we find out that a property pj occurs in the majority of documents (> (100%− ε)), we
select the matching JSON documents from the NoSQL database with the following query:

db.collection.find({pj: {$exists: false}})

We only have to consider that at the moment not all NoSQL databases support negations
in queries. For instance, in the current versions of Cassandra we cannot express queries
containing a not exists.

6 Experiments

We have implemented our schema extraction algorithm and conducted experiments on
the configuration database of the Wendelstein 7-X project [SLB+12]. This database has
been in use for several years to record configurations of plasma experiments. It currently
holds more than 120 different collections to record information on devices, as well as
parameters that control the settings of experiments. Most collections within this database
are structured and regular, yet there are also structural outliers. Until today, the database
has been used without any explicit schema description.

Our implementation has extracted one JSON schema for each collection. We implemented
the two alternatives for schema extraction as introduced in Sections 4 and 5 in Python.
Our experiments ran on an Intel Core i7-461000U CPU @ 2.70GHz machine with 8.00
GB RAM. In most applications scenarios, schema extraction is run as a batch process, so
we do not require runtimes that allow for real time user interactions. However, runtime
is still a critical criterion for the feasibility of schema extraction. Thus we study the run-
time of our algorithms to acquire ballpark numbers, and to determine whether the method
is even applicable in practice. Moreover, we decided to use an off-the-shelf commodity
machine, rather than a powerful data server, since we want to observe if the algorithm can
be executed without special hardware.

The following performance measurements show the execution times of schema extraction
using a structure identification graph introduced in Section 4. We represent the perfor-
mance measures for the 30 most data-intensive Collections of the Wendelstein-7-X dataset.



Figure 12: Schema extraction for the different collections of the Wendelstein data

On the x-axis, the size of the input data is shown. We determine the total number of
structural information that means the sum of the number of properties, arrays, and objects
in the JSON collection. As an example: One collection contains 206 JSON documents,
each JSON document has 22 properties, so the input data size of this collection is 4532.
Our experiment shows linear growth with the size of the input data (see Figure 12).

The schema extraction approach based on the Structure Identification Graph SG (Sec-
tion 4) works very well for small data sets. An obvious bottleneck is that all nodes and
edges carry references to the original data. For collections containing many data sets these
lists become very large. For that, we applied the alternative approach based on the RG
that was introduced in Section 5.

To compare both approaches, we tested them with yet another dataset. We chose a larger
MongoDB database storing about 800 collections in 150 GigaByte of data. The database
contains statistical data of Web Performance Measures. It describes different technical
system parameters, logdata, and different performance data of several Web Information
Systems of the Pagebeat project [FBH+14]. Figure 13 shows some results of the schema
extraction for this data. The SG construction for the larger data set 13(a) is only pos-
sible for data sets up to 40 million input nodes (about 500 Mega Byte when stored in
MongoDB). The method with RG could be realized for all collections of the data set up.
Again, the algorithm runtime is linear in the size of the input data.

7 Related Work

There is a large body of work on schema extraction from XML documents ( [MLN00],
[DCjWS06], [HNW06]). Our approach builds upon the work of Moh, Lim, and Ng,
who have developed a DTD Miner for extracting a schema for a given set of XML docu-
ments [MLN00]. They capture the structure of each XML document with a tree, and then



(a) Schema Extraction with SG

(b) Schema Extraction with RG

Figure 13: Schema extraction on different MongoDB collections on Web usage data

derive a graph representation which summarizes all structural variants. Finally, a DTD
is derived that identifies optional elements and repeating elements. In deriving a JSON
schema, as done in this paper, the document order and repetition of elements do not play a
role. This makes it possible to build the reduced graph, as discussed in Section 5.

The authors in [BNSV10] give a comprehensive survey over the extraction of DTDs and
regular expressions from XML documents in particular. They point out the challenges
imposed by the order of siblings in XML documents, and the fact that cross-references
between nodes actually define graphs, rather than trees. With JSON documents, however,
the order among sibling nodes does not play a role.

In [BCNS13], the authors propose a type system for JSON objects as well as a type infer-
ence algorithm. This serves as a basis for defining the semantics of JSON query languages.

The JSON type system in [CGSB12] comes with a MapReduce-based type inference al-



gorithm. In the context of NoSQL data stores, scalability is vital, since we may need to
handle data sets in the big data category. At the time of writing this paper, there are no
benchmarks effectively demonstrating the scalability of this approach yet.

In data exchange, schema extraction plays a vital rule. IBM’s BlueMix portfolio [IBM14]
offers a schema discovery component for importing JSON data from Cloudant into the
data warehousing product Dynamite. Any received data that does not match this schema
is sent to a bucket, where it can then be inspected manually.

In [KSS14], we introduce the idea of an external schema management component for
NoSQL databases. In [SKS13] we further propose a language for declaring schema evo-
lution operations for extensible record stores and for NoSQL document stores.

8 Summary and Future Work

In this article, we introduce two variants of schema extraction for NoSQL databases. The
first one is similar to the DTD Miner [MLN00] that was developed for XML documents.
The second algorithm relies on an optimization that we can make because JSON doc-
uments are simpler in structure than XML documents. With both approaches, we can
generate a JSON schema from an available data set. We show that the internal data struc-
ture that we use for schema discovery can also be used for collecting statistics on the input
data, as well as for detecting structural outliers. For instance, we can derive a similarity
measure that captures how regularly the data within a collection is structured.

We tested our approaches on different JSON collections managed in MongoDB. With the
Web Statistic data from the Pagebeat project [FBH+14], our outlier detection found several
outlier documents that were not previously known to the owners of this data. Knowing
about outliers is an important prerequisite for improving the data quality.

In our long term vision, we see our schema extraction algorithm as part of a powerful
schema management component for NoSQL databases. Systems that do not actively man-
age the schema actually force software developers to maintain the schema constraints
within in the application logic. To assist developers in their daily work, we are design-
ing dedicated tools for handling and managing the schema for NoSQL data stores, while
paying full respect to their strongpoint, their schema-flexibility.
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