
cbe

Technical Report 1

Formal Semantics of NoSQL Evolution Operations for
Different Data Heterogeneity Classes 1

Technical Report

Mark Lukas Möller2, Meike Klettke3, Uta Störl4

Abstract:

An evolution of a NoSQL database consists of two parts, an evolution of its schema and migrating
datasets according to this new schema version. The applied migration operations have to consider the
characteristics of the NoSQL source data. In this article, we define the semantics of evolution and
data migration operations and their inverse operations, distinguishing between different heterogeneity
classes (ranging from regular datasets up to completely unstructured NoSQL datasets). We are going
to show the consequences for NoSQL query rewriting, for handling of a lazy NoSQL migration, and
we sketch the consequences for a NoSQL migration adviser which proposes a suitable migration
strategy for a concrete scenario.

Keywords: NoSQL Schema Evolution; Data Hetergeneity Classes; Query Rewriting

1 Introduction

All successful software products underlie permanent changes. This entails frequent evolutions
of data structures and the necessity to adapt data onto the new structures. In database
research, schema evolution for relational databases has been studied in detail; in [Ro92],
several publications on this matter have been collected. The development of a similar
approach for schema evolution and data migration for NoSQL databases becomes much
more complicated due to the structural heterogeneity of the input datasets.

Most NoSQL database systems are schemaless, they do not predefine structures and semantic
constraints. This is the reason why these systems can be applied for storing homogeneous
structured data as well as heterogeneous data. In homogeneous structured NoSQL databases,
all datasets have exactly the same structure and certain integrity constraints hold. In this
case, the application generates the NoSQL datasets and the application logic guarantees
the validity of these datasets. However, in heterogeneous NoSQL databases, datasets with
1 This Technical Report is published in the scope of the project "NoSQL Schema Evolution und Big Data Migration

at Scale" which is funded by the Deutsche Forschungsgemeinschaft (DFG) under the number 385808805.
2 University of Rostock, mark.moeller2@uni-rostock.de
3 University of Rostock, meike.klettke@uni-rostock.de
4 University of Applied Sciences Darmstadt, uta.stoerl@h-da.de

https://creativecommons.org/licenses/by-nc/3.0/
mark.moeller2@uni-rostock.de
meike.klettke@uni-rostock.de
uta.stoerl@h-da.de


2 Mark Lukas Möller, Meike Klettke, Uta Störl

different structures are stored in the same collection. A NoSQL database evolution method
must be able to handle all variants of input datasets that can be available in the different
classes of NoSQL databases.

Before we introduce the semantics of the evolution operations, we classify the different
degrees of NoSQL heterogeneity. Figure 1a visualizes three independent dimensions that
have to be considered.

1:1

no

ho
mo

-
ge
ne
ou
s

he
ter
o-

ge
ne
ou
s

yes

m:n

1:n

n:1

C
ar
di
na

lit
ie
s

Dangling Tuples Str
uc
tu
ra
l H
ete
go
ren

eit
y

(in
sam

e v
ers
ion

)

4

21

3

(a) Three dimensions of the four NoSQL
HCs

Add Delete

Rename

Move

Copy

A1

A4

D1

D4

R1

R4

M1

M2

M3

M4

C1

C2

C3

C4

(b) Heterogeneity Classes of the Evolution
Operations

Fig. 1: NoSQL Heterogeneity Classes

Our evolution language defines two multi-entity operations, Move and Copy. Both operations
specify matching conditions between entities. Because the NoSQL databases do not check
semantic constraints in advance, we first have to distinguish whether all properties have
a matching partner, or whether there are dangling tuples (x-axis in Figure 1a). The next
dimension is the cardinality between two entities in case of a Move or a Copy operation
(y-axis). The last dimension regards the heterogeneity of entities of the same version.
Here we are distinguishing between datasets in which all entities of the same version have
homogeneous or heterogeneous structures (z-axis in Figure 1(a)). These three dimensions
influence the semantics. We are deriving different heterogeneity classes (HC), starting from
the most structured up to unstructured datasets.

HC1:Heterogeneity Classes In this class, the database can contain datasets in different structural versions, yet
all datasets in the same version have exactly the same structure. Further, we can
assume 1:1 cardinalities and no dangling tuples between two entity types of matching
conditions.

HC2: The second class encompasses HC1 and adds 1:n cardinalities. Dangling tuples can
occur and have to be considered during data migration.

HC3: The third class extends HC2 to arbitrary cardinalities (1:1, 1:n, n:1, n:m).
HC4: The fourth class represents NoSQL databases that can have different structures

within the same version. Here, optional properties can occur that may be available in
some entities of a concrete version and missing in other entities of the same version.



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 3

NoSQL databases allows this heterogeneity even if an explicit schema, e.g., a JSON
schema for a JSON database, is present.

We want to motivate with a small and simple example, why heterogeneity influences the
process of data migration in NoSQL. In Figure 2, an excerpt of instances of a database is
given which stores experiment data. In this excerpt, three entities in version 1 are given.
The property _v is a system-handled property and contains the schema version of this entity.
The entity’s structure is heterogeneous (HC4), because two entities have an attribute date
and the third has an attribute dt instead. By applying a Rename operation and migrating the
entities, the entities in version 2 are generated, which are given on the right-hand side of
Figure 2.

e3

{ run_id : 3,
dt : 2019-01-03,
s_value : "Warnow",
_v : 1

}

{ id : "1",
name : "Tanja",
points : 4711,
version : 1

}

{ run_id : 1,
date : 2019-01-01,
s_value : "Baltic Sea",
_v : 1

}

{ run_id : 2,
date : 2019-01-02,
s_value : "North Sea",
_v : 1

}

e1

e2

test_run

e3

{ run_id : 3,
dt : 2019-01-03,
s_value : "Warnow",
_v : 2

}

{ id : "1",
name : "Tanja",
points : 4711,
version : 1

}

{ run_id : 1,
dt : 2019-01-01,
s_value : "Baltic Sea",
_v : 2

}

{ run_id : 2,
dt : 2019-01-02,
s_value : "North Sea",
_v : 2

}

e1

e2

test_run

op: rename test_run.date to dt

Fig. 2: Data Migration after a Rename Operation

With an eager migration Eager Migrationall entities are immediately updated and are stored in the NoSQL
database in version 2. For example, we want to select all Players with a score greater than
100. In this case, the following sample query can be executed and assumes that all entities
are in version 2.

1 SELECT run_id, date, s_value FROM test_run WHERE _v=2

The query returns all the entities from 2.1 to 2.3 as the result.

In case of lazy migration Lazy Migration, all, some or none entities can still be present in version 1. In this
approach, data is only migrated on-access. A query has to be rewritten for selecting the
entities for migration. Applying the previous query is not enough. For query rewriting, (a)
the migration approach, (b) the structural variants for heterogeneous datasets in a version
and (c) cardinalities of multi-entity operations have to be considered.

To access all entities which are still in the previous version, the following query has to be
executed:



4 Mark Lukas Möller, Meike Klettke, Uta Störl

1 SELECT run_id, dt, s_value FROM test_run WHERE _v=1)
2 UNION
3 SELECT run_id, date AS dt, s_value FROM test_run WHERE _v=1

Only with this query, we get the complete result set for datasets of HC4. To fetch all entities
in all available versions, both queries are executed and the result sets are combined with a
union operation.

We see that even for this simple Rename operation query rewriting that takes older versions
into account is not easy to realize. And indeed, most evolution steps of real applications
have to deal with even multiple schema changes. It is favourable to have a component which
keeps track of the different evolution operations and the heterogeneity of data and supports
in query formulation since generating queries by hand for different kinds and versions
with additional respect to schema heterogeneity is extremely error prone. We introduce the
general idea of a query rewriting component in Section 4 while a detailed description is out
of such a component is out of this paper’s scope.

Application version j
with queries in version j

Data in version j retrieved by queries in application version j

Data in version j+m retrieved by queries in application version j+mForward Query Rewriting
Data in version j+m
Queries in version j

Backward Query Rewriting
Data in version j

Queries in version j+m

Application version j+m
with queries in version j+m

Fig. 3: Forward and Backward Query Rewriting

QueryForward and Backward
Query Rewriting

rewriting (QR) is applicable in two directions. In the Backward Query Rewriting
approach, the application is aware of the most recent schema of the database while entities
can be present in older versions due to a lazy migration approach. The task of the QR
component is to lookup entities and their property values as if they are eagerly migrated. In
Figure 3, this is shown on the right hand side. The left hand side gives the idea of Forward
Query Rewriting which can be used to support legacy applications. When the database
schema evolves, queries of an application might become broken. Instead of adapting the
application, the QR component can lookup queries and try to virtually invert evolution
operations as if entities in newer schema versions were not migrated in the past.

For both QR cases, it is mandatory to understand the semantics of the evolution operations
and how they differ for heterogeneous datasets in contrast to homogenenous ones and how
different cardinalities of multi-entity operations affect the evolution process. Therefore, we
present an in-depth specification for evolution operations in different heterogeneity classes.



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 5

Contribution

In this technical report we will make the following contribution.

• We introduce four heterogeneity classes (HC1–HC4) for NoSQL and define the
semantics of the NoSQL evolution operations and data migrations operations for each
HC, and their reverse operations in Section 2.
• We show in Section 3 what query rewriting for the different HCs entails.
• Finally, we sketch the consequences for a data migration adviser in Section 6 and

conclude the advantages of a schema management component for handling evolving
structures of NoSQL datasets.

2 Semantics of the Evolution Operations

The NoSQL evolution language consists of the three single-type operations, Add, Delete
and Rename and of the two multi-type operations, Move and Copy. The operations are defined
for the evolution of the schema. Data migration operations can be derived from the NoSQL
evolution operations. These operations are used to migrate affected entities into the latest
structural version. We start to define the semantics of the operations on regular structures and
structured datasets, and we will extend them later to irregular structures and heterogeneous
datasets. The effort for the data migration increases for each of these HCs. In order to define
the concrete HC, pre- and postconditions are used to check the regularity of the data. The
pre- and postconditions are inspired by the Hoare triple.

NoSQL data with an equal or similar set of properties is called a kind Kind. A kind named A is
defined by a schema SA and a set of entities EA, i.e., KA = (SA, EA).

The schema SA Schemaconsists of a set of property names SA = {A1, . . . , An}. The set of entities
over SA is defined as EA := {e1, . . . , em} where m is the number of entities. Each entity Entityin
EA consists of up to n attributes called ai j , so ei = {ai j | i ∈ {1, . . . ,m}, j ∈ {1, . . . n}}.
Here, i represents the index for the i-th entity of EA and j is the j-th attribute of the entity.

Each attribute Attributeai j consists of an attribute name and an attribute value, i.e., ai j = (Ai j :
vi j ) ∈ SAi × D(Ai) whereby SAi ⊆ SA and D(Ai) ⊆ D(A). Thus, SAi × D(Ai) represents
the property domain. The property value vi j is either a null value, a boolean, a string, a
number, an array, or it can contain nested properties, as is typical in NoSQL applications. If
vi j contains the nested property w, the value of w is accessible by the path expression vi j .w.
In case of nested properties, all paths are assumed to be available in the schema as well.

Example. Let us consider a database of a research institute storing data of exper-
iments. We regard three different kinds storing information about projects, metadata,
and the sensor values for each test run. The kind projects stores information about



6 Mark Lukas Möller, Meike Klettke, Uta Störl

a project and is defined as Kprojects = {Sprojects, Eprojects}. The according schema is
Sprojects = {“p_id”, “station_name”, “funder”, “budget”}. A set of possible entities could
read as follows:

Eprojects = {
{("p_id": 1), ("station_name": "Ocean"), ("funder": "DFG"), ("budget": "5 Mil")},
{("p_id": 2), ("station_name": "Baltic Sea")}
}

Here, Eprojects represents the set with two entities of this kind where the first entity has two
optional properties. Then, the first property of the first entity is a11 = (A11 : v11 ) = (“p_id” :
1). All property names are available in the schema.

Example 2. Consider a kind for calibration data with nested data. The following entity is
part of this kind:

Ecalibdata = {{("gyroscope": {"offset": {"x"} : 10}, {"y": 2}}})

For this example, “gyroscope”, “gyroscope.offset”, “gyroscope.offset.x”, and “gyro-
scope.offset.y” are part of Scalibdata.

For∈∗-Operator the definition of the evolution operations, we often have to check whether an entity
contains an attribute with a certain attribute name without respect to its value. Because
properties are stored as a tuple and not as a set, we define an own operator called ∈∗ that
checks if there is a property available in a given entity or not. For this purpose, we define a
projection operation which projects onto the property name:

πA := SAi × D(Ai) → SAi with (Ai j , vi j ) 7→ Ai j .

Based on this projection we can define the ∈∗ operator.

X ∈∗ ei :⇔ ∃ai j ∈ ei : X ∈ πA(ai j )
X ∈∗ EA :⇔ ∀ei ∈ EA : X ∈∗ ei

Reconsider the previous example. Here, “funder” ∈∗ e1 is True while “funder” ∈∗ e2
evaluates to False. Checking the presence of a property named “manager” evaluates to False
for all entities.

DueVersioning to migration, we consider the same kind at different points of time. Therefore,
we introduce a notation to state the version written in square brackets. For instance,
SA[10] = {A1, . . . , An}[10] describes that the definition for the schema of kind A is valid at
schema version 10. In the abstract notation for the evolution and migration operation, we
will use [va] and [vb] for the version information of the kinds KA and KB.



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 7

For Preconditions,
Postconditions

each operation, we define pre- and postconditions. From the later view of implementation,
pre- and postconditions are comparable with the concept of design by contract. Operations
are only executed if the preconditions are fulfilled, otherwise they will be rejected. After
the execution of an operation, the postcondition is guaranteed. From the formal view, the
postcondition is important for the formal chaining of operations and for the query rewriting.

2.1 Heterogeneity Class 1
Key Characteristics
• Structurally homogeneous data
• No dangling tuples
• 1:1 cardinalities

HC1 covers the simplest cases. All datasets
are regular which entails that all entities of
a kind have the same internal schema. Ho-
mogeneity enables to provide a reversible
semantics for the migration operation with
the exception of the Delete operation. We
can reconstruct the schema and even the data and therefore rewrite queries with an exact
inverse in both directions (cf. [Fa11]). For the Delete operation, only a relaxed inverse can
be specified, i.e. the schema can be reconstructed but not the values (cf. [Fa11]).

Each evolution operation modifies the schema. On the instance (entity) level, the operation
modifies the implicit structure and updates affected instances. The schema and instance
modification are described by state transitions. On the left side of the state transitions, there
are the states before and on the right side after the execution of the evolution operation.

2.1.1 The Add Operation

This operation adds a property to all entities of a kind. The kind, the new property name
and its default property value are specified. Formally, the operation is defined as:

Semantics of
Add in HC1

B Add A.X = d
precond : {X < SA[vA]}

SA(A1, . . . , An)[vA] → SA(X, A1, . . . , An)[vA+1]

∀ei ∈ EA : (ei(a1, . . . , an)[vA] → ei((X : d), a1, . . . , an)[vA+1])

postcond : {X ∈ SA[vA+1] ∧ ∀ei ∈ EA[vA+1] : X ∈∗ ei}

First, this evolution operation checks if the precondition precond is fulfiled, which specifies
that the name of the property is currently not available in the explicit schema of kind KA

at version vA. Because we previously defined for the internal schema of the entities that
ai j = (Ai j : vi j ) ∈ SAi × D(Ai) and SAi ⊆ SA, we know that there is no entity which has a
property with the property name X . The second line describes how the explicit schema of
kind KA evolves. In version vA, the schema SA consists of n properties A1, . . . , An. After



8 Mark Lukas Möller, Meike Klettke, Uta Störl

the operation, the schema consists of n + 1 properties with the added property and the
version number is incremented by 1 to vA + 1. The third line gives the modification of each
entity of kind KA. After the operation, each entity consists of its previous properties a1 to
an and the added property (X : d) where X is the new property name and d is the specified
default value. The version number of each entity is modified to vA + 1. After the operation,
when the schema and all entities have been modified, the postcondition postcond holds. The
property name X is part of SA in version vA + 1 and each entity ei in the set of entities EA

contains a property with the property name X , hence X ∈∗ ei .

BesideNull Value (⊥) the possibility to add a property with a default value, it is also possible to add a
property without default value, e.g. Add A.X. In this case, instead of (X : d), the property
(X : ⊥) is added.

It may be necessary to reverse the Add operation, e.g. for Forward Query Rewriting. For this,
a reverse operation has to be defined. Semantically, any reverse operation should restore
the schema of the previous version and should reconstruct the instances as far as possible,
too. Actually, data is not re-migrated to a previous version. Conceptually, a view over the
old schema is created which transparently looks up the corresponding properties across
newer schema versions. We denote the backward direction of any evolution operation op
with op−1, e.g. Add−1 A.X .

Reversing the Add operation is easy. The added attribute is removed.

Reverse Semantics
of Add in HC1

B Add−1 A.X
precond : {X ∈ SA[vt+1] ∧ ∀ei ∈ EA[vt+1] : X ∈∗ ei}

SA(X, A1, . . . , An)[vt+1] → SA(A1, . . . , An)[vt ]

∀ei ∈ EA : (ei((X : ⊥), a1, . . . , an)[vt+1] → ei(a1, . . . , an)[vt ])

postcond : {X < SA[vt ]}

In this case, we can invert the operation by swapping the pre-and the postcondition and the
left and the right sides of the forward rule due to the lack of optional properties and high
homogeneity as characteristics of HC1.

2.1.2 The Rename Operation

This operation renames a property of all entities of a kind. As a precondition, the property to
be renamed (“old property”) has to be existent, while the new property name is not allowed
to be present in advance of the operation in any kind. Formally, we can define the operation
as follows:



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 9

Semantics of
Rename in HC1

B Rename A.X To Z
precond : {X ∈ SA[vA], Z < SA[vA]}

SA(X, A2, . . . , An)[vA] → SA(Z, A2, . . . , An)[vA+1]

∀ei ∈ EA : (ei((X : x), a2, . . . , an)[vA] → ei((Z : x), a2, . . . , an)[vA+1])

postcond : {X < SA[vA+1], Z ∈ SA[vA+1]}

On the schema level, the property name X is replaced by the property name Z . On the entity
level, the property (X : x) is modified. After the operation, the property was changed to
(Z : x) – The property name changed from X to Z while the property value x was preserved.
After the Rename operation, no entity contains the property X anymore but each entity
contains Z as stated in the postcondition.

2.1.3 The Delete Operation

The Delete operation a the property from all entities of a kind. To execute the operation,
the property is required to be present in advance of the operation.

Semantics of
Delete in HC1

B Delete A.X
precond : {X ∈ SA[vA]}

SA(X, A2, . . . , An)[vA] → SA(A2, . . . , An)[vA+1]

∀ei ∈ EA : ei((X : x), a2, . . . , an)[vA] → ei(a1, . . . , an)[vA+1]

postcond : {X < SA[vA+1] ∧ ∀ei ∈ EA[vA+1] : X <∗ ei}

In contrast to the other operations in Heterogeneity Class 1, a loss of information ocurred
after the Delete operation. Nevertheless, we need to provide an inverse operation, e.g. for
legacy applications which expects the property to be present for the application logic. At
least, it is possible to reconstruct the schema. Instead of the original values, the lost property
values are substituted with a ⊥ value.

Reverse Semantics
of Delete in HC1

B Delete−1 A.X
precond : {X < SA[vA]}

SA(A2, . . . , An)[vA+1] → SA(X, A2, . . . , An)[vA]

∀ei ∈ EA : ei(a1, . . . , an)[vA+1] → ei((X : ⊥), a2, . . . , an)[vA]
postcond : {X ∈ SA[vA+1]}

The ability to reconstruct the but not the values is comparable to a relaxed inverse in the
context of the CHASE algorithm (c.f. [Fa11]).



10 Mark Lukas Möller, Meike Klettke, Uta Störl

2.1.4 The Move Operation

The Move operation is a multi-type operation which moves a property from the entities of
a kind entities of a different kind based on a matching condition. In HC1, we assume an
uncomplicated 1:1 match, which means that every entity of the source kind has exactly one
match with an entity of the target kind, and vice versa. Accordingly, bijectivity is considered
as fulfilled. This presumes that the value of the matching condition is unique for each entity
and there is neither an entity on the source side nor on the target side that do not have
a matching partner. Furthermore this restriction creates some implicit assumptions, for
instance that both kinds have the same amount of entities.

For Heterogeneity Class 1, we define the semantics of the Move operation as follows:

Semantics of
Move in HC1

B Move A.X To B.Z Where A.K = B.F
precond : {X ∈ SA[vA], Z < SB[vB ]}

SA(X,K, A3, . . . , An)[vA] → SA(K, A3, . . . , An)[vA+1]

SB(F, B2, . . . , Bm)[vB ] → SB(Z, F, B2, . . . , Bm)[vB+1]

∀ei ∈ EA, ej ∈ EB, ei .K = ej .F :
(ei((X : x), (K : k), ai3, . . . , ain )[vA] ∧ ej ((F : k), bj2, . . . , bjm )[vB ]

→ ei((K : k), ai3, . . . , ain )[vA+1] ∧ ej ((Z : x), (F : k), bj2, . . . , bjm )[vB+1])

postcond : {X < SA[vA+1], Z ∈ SB[vB+1]}

In the Move operation, we specify the source and target kinds, in the exampleKA andKB and
the property names. If these property names differ, the Move operations implicitly realizes a
renaming. In the Where clause, the matching condition is specified.

In advance of the operation, the schema SA of the source kind KA contains the property
name X , while the schema SB of the target kind does not contain the attribute name Z which
was specified in the Move command. On the schema level, it is apparent that the moved
property X is not present anymore in SA after the operation execution. Instead, SB now
contains Z . After the operation, all entities ei and ej were modified. The property (X : x) is
not present anymore in the source kind while (Z : x) is. Note that the value of the property
remains the same (x) before and after the operation.

To invert the Move operation in HC1, it is possible to simply "move back" the affected
property with the same matching condition in consequence of the given bijectivity (each
source entity has exactly one matching partner and vice versa).



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 11

2.1.5 The Copy operation

The Copy operation is quite similar to the Move operation. The difference between both
operations is that the copied attribute remains in the source entity. Consequently, the
postcondition for the source schema remains unchanged. Formally, we can describe the
Copy operation as follows:

Semantics of
Copy in HC1

B Copy A.X To B.Z Where A.K = B.F
precond : {X ∈ SA[vA], Z < BS[vB ]}

SA(X,K, A3, . . . , An)[vA] → SA(X,K, A3, . . . , An)[vA+1]

SB(F, B2, . . . , Bm)[vB ] → SB(Z, F, B2, . . . , Bm)[vB+1]

∀ei ∈ EA, ej ∈ EB, ei .K = ej .F :
(ei((X : x), (K : k), ai3, . . . , ain )[vA] ∧ ej ((F : k), bj2, . . . , bjm )[vB ]

→ ei((X : x), (K : k), ai3, . . . , ain )[vA+1] ∧ ej ((Z : x), (F : k), bj2, . . . , bjm )[vB+1])

postcond : {X ∈ SA[vA+1], Z ∈ BS[vB+1]}

To invert the Copy operation, it is required to to delete the property from the schema
information and from the entity of the target kind (hereKB). Because the copied property is
still present in the source kind after the „forward“ operation, there is no loss of information
after the operation. The reverse copy operation can be described as:

Reverse Semantics
of Copy in HC1

B Copy−1 A.X To B.Z Where A.K = B.F
precond : {X ∈ SA[vA+1], Z ∈ BS[vB+1]}

SA(X,K, A3, . . . , An)[vA+1] → SA(X,K, A3, . . . , An)[vA]

SB(Z, F, B2, . . . , Bm)[vB+1] → SB(F, B2, . . . , Bm)[vB ]

∀ei ∈ EA, ej ∈ EB, ei .K = ej .F :
(ei((X : x), (K : k), ai3, . . . , ain )[vA+1] ∧ ej ((Z : x), (F : k), bj2, . . . , bjm )[vB+1])

→ ei((X : x), (K : k), ai3, . . . , ain )[vA] ∧ ej ((F : k), bj2, . . . , bjm )[vB ])

postcond : {X ∈ SA[vA], Z < BS[vB ]}

Until here, we presented the definitions for five basic operations on homogeneous data and
1:1 matches for Multi-Entity operations. In the following sections, we show the impact of
more complex heterogeneity classes on the semantics, their definitions and consequences.



12 Mark Lukas Möller, Meike Klettke, Uta Störl

2.2 Heterogeneity Class 2
Key Characteristics
• Structurally homogeneous data
• Dangling tuples are possible
• 1:n cardinalities

Heterogeneity Class 2 extends HC1 by 1:n
cardinalities. Datasets of a kind in the same
version are still homogeneous and without
optional properties. Because cardinalities
only affect multi-entity-operations, the se-
mantics for the single-type operations re-
main the same while the semantics for Move and Copy changes.

The semantics of Heterogeneity Class 2 for backward query rewriting is very similar.
Nevertheless, two main changes have to be considered:

• Due to multiple matches on the target side, it is not possible to increment the version
numbers directly as in the semantics of HC1. Otherwise, they are incremented as
often as an entity of the source kind matches with an entity of the target kind. Hence,
a more transactional expression is required.
• It is necessary to define how properties behave which do not have a matching partner

on the target kind (1:n match with n=0). For those entities, the property is simply
removed.

2.2.1 The Move Operation

FromOperation Stages the effect, the Move operation in Heterogeneity Class 2 does the same as in HC1 but
with 1:n cardinalities. Consider the difference in the semantics. The lines in the definition
represent operation stages. A following step is only executed when the stage before is
finished.

In the first stage (text lines 3–7) the case for entities of the source kind with at least one
matching partner is considered. The property is moved as in HC1 with the difference that
the version number is not incremented yet.

In the second step (lines 8–9), the semantics describes how to deal with source kinds without
a matching partner. In this case, the property which is affected from the move operation is
simply removed.

The third step increments the version numbers for all entities of the source and the target
kind.



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 13

Semantics of
Move in HC2

B Move A.X To B.Z Where A.K = B.F
precond : {X ∈ SA[vA], Z < SB[vB ]}

SA(X,K, A3, . . . , An)[vA] → SA(K, A3, . . . , An)[vA+1]

SB(F, B2, . . . , Bm)[vB ] → SB(Z, F, B2, . . . , Bm)[vB+1]

∀ei ∈ EA, ej ∈ EB, ei .K = ej .F :
(ei((X : x), (K : k), ai3, . . . , ain )[vA] ∧ ej ((F : k), bj2, . . . , bjm )[vB ]

→ ei((K : k), ai3, . . . , ain )[vA] ∧ ej ((Z : x), (F : k), bj2, . . . , bjm )[vB ])

∀ei ∈ EA : @ej ∈ EB : ei .K = ej .F

(ei((X : x), (K : k), ai3, . . . , ain )[va ] → ei((K : k), ai3, . . . , ain )[va ])

ei[vA] → ei[vA+1]

ej[vB ] → ej[vB+1]

postcond : {X < SA[vA+1], Z ∈ SB[vB+1]}

2.2.2 The Copy Operation

A similar semantics is provided for the Copy operation. Instead of removing the property for
entites of the source kind without a matching partner, the property remains.

Semantics of
Copy in HC2

B Move A.X To B.Z Where A.K = B.F
precond : {X ∈ SA[vA], Z < SB[vB ]}

SA(X,K, A3, . . . , An)[vA] → SA(K, A3, . . . , An)[vA+1]

SB(F, B2, . . . , Bm)[vB ] → SB(Z, F, B2, . . . , Bm)[vB+1]

∀ei ∈ EA, ej ∈ EB, ei .K = ej .F :
(ei((X : x), (K : k), ai3, . . . , ain )[vA] ∧ ej ((F : k), bj2, . . . , bjm )[vB ]

→ ei((K : k), ai3, . . . , ain )[vA] ∧ ej ((Z : x), (F : k), bj2, . . . , bjm )[vB ])

ei[vA] → ei[vA+1]

ej[vB ] → ej[vB+1]

postcond : {X < SA[vA+1], Z ∈ SB[vB+1]}



14 Mark Lukas Möller, Meike Klettke, Uta Störl

2.3 Heterogeneity Class 3 Key Characteristics
• Structurally homogeneous data
• Dangling tuples are possible
• m:n cardinalities

In this heterogeneity class, structurally ho-
mogeneous data within the same version
with arbitrary cardinalities are considered.
Entities without join partner on the source
side or on the target side can occur and
entail dangling tuples as well as side effects of these problems. The single-type operations
are the same as before while the semantics of the multi-entity operation is changing again.

Arbitrary Cardinalities can cause problems regarding the Move and Copy operation as shown
in Figure 4. Let us slightly adapt our running example. We introduce the kind “metadata”
with the four properties “m_id”, “is_scaled”, “measureloc” and “_v”. A Move operation
is executed which moves the property “measureloc” from Kmetadata to Ktest_run for
properties where the matching condition “metadata.m_id = test_run.run_id” holds.

e3

{ id : 2,
name : "Mark",
score : 120,
version : 1

}

{ id : 2,
name : "Mark",
score : 120,
version : 1

}

{ m_id : 2,
is_scaled : True,
measureloc : "Baltic Sea",
_v : 1

}

e4

{ id : "1",
name : "Tanja",
points : 4711,
version : 1

}

{ m_id : 1,
is_scaled : True,
measureloc : "Baltic Sea",
_v : 1

}

{ m_id : 2,
is_scaled : True,
measureloc : "Pacific",
_v : 1

}

e1

e2

e1e1

metadata

e3

{ run_id : 7,
dt : "2019-02-23",
s_value : 136,
_v : 1

}

{ id : "1",
name : "Tanja",
points : 4711,
version : 1

}

{ run_id : 1,
dt : "2019-04-01",
s_value : 17,
_v : 1

}

{ run_id : 2,
dt : "2018-12-12",
s_value : 213,
_v : 1

}

e1

e2

test_run

Move [Overwrite|Ignore] metadata.measureloc To test_run.measureloc
Wheremeatata.m_id = test_run.run_id

1:1

n:1

0:1

1:0
{ m_id : 4,

is_scaled : False,
measureloc : "L. Michigan",
_v : 1

}

Fig. 4: Possible problems of cardinalities when executing the Move operation

In this context, we see several problems that we need to solve. First, the value of e2 of
Ktest_run has to be determined since there are two possible values – “Pacific” and “Baltic
Sea”. Then, for the entity e2 of Ktest_run, no metadata is available. Hence, it is necessary
to add the score property with a default value to this entity. The player P.4 does not belong
to an existing account. In other examples, even n:m matches are available. All possible
cardinalities need to be covered by our semantics.



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 15

Conflict resolution approaches For the handling of occurring problems – e.g. determining
the value of e2 of Ktest_run in Figure 4 – conflicht resolution strategies are necessary. We
propose two different conflict resolutions approaches Overwrite and Ignore and define the
semantics for both. The Overwrite approach updates a value each time when a matching
partner is found in the database. In case the input data are not sorted, a nondeterministic
result may be generated. In other cases, e.g. for databases sorted by a timestamp, we can
apply this approach.

2.3.1 The Move Operation

In Figure 5, we are defining the semantics of the Move Overwrite operation. We are here
distinguishing between the global pre- and postconditions and case pre- and postconditions.
The first hold for all entities of a kind while the latter ones do not necessarily hold for all
affected entities.

In the HC3, the same pre- and postconditions hold as in the HC1 and on the schema level,
we also have the same schema evolution transitions. On the entity level, we have to consider
several subcases. At first, we consider 1:1, 1:n, n:1, and n:m matches. The condition that
there is at least one matching partner is expressed by ∀ei ∈ EA, ej ∈ EB, ei .K = ej .F.

In the definition of the Move Overwrite operation we have to distinguish two cases: The first
case expresses that the entity ej does not contain the property Z yet. Then, the property with
the name Z is added to ej and its property value is the value of X of ei , in our semantics it
is x. From the source kind ei , the property with the name X and the value x is removed.

The seconds case describes what happens when there is already such a property with the
name Z on the target side. This can happen if n:1 or m:n cardinalities are valid. In these cases,
we overwrite the property value with the property name Z of the entity ej with the property
value with the property name X of the entity ei . In the previously introduced problem
statement in Figure 4, the value of A.2 would be 130 after the first match. Afterwards, 130
ist overwritten by 120 of the second (and last) match.

Please note that the properties and the version number on the source side have to be kept
until the Move operation to all target entities is executed. Only afterwards we can remove the
property with the name X of each entity of ei and increment the version information from
the source and target entities. Otherwise, we would run in trouble, for instance with m:n
matches. If the property is removed from the source entity after the first match, there is a
problem at the second match because the property on the source side is not present anymore.
Additionally, we are not able to increment the version information directly because of the
same argumentation as in HC2.

The last three lines before the postcondition describe the handling of entities without a join
partner: The entity X is deleted from the entity of the source kind. A property with the



16 Mark Lukas Möller, Meike Klettke, Uta Störl

Semantics of
Move Overwrite in HC3

B Move Overwrite A.X To B.Z where A.K = B.F
global precond : {X ∈ SA[vA], Z < BS[vB ]}

SA(X,K, A3, . . . , An)[vA] → SA(K, A3, . . . , An)[vA+1]

SB(F, B2, . . . , Bm)[vB ] → SB(Z, F, B2, . . . , Bm)[vB+1]

∀ei ∈ EA, ej ∈ EB, ei .K = ej .F :

case : Z <∗ ej[vB ]



case precond : {Z <∗ ej[vB ]}
(ei((X : x), (K : k), ai3, . . . , ain )[vA]
∧ej ((F : k), bj2, . . . , bjm )[vB ]

→ ei((X : x), (K : k), ai3, . . . , ain )[vA]
∧ej ((Z : x), (F : k), bj2, . . . , bjm )[vB ])

case postcond : {Z ∈∗ ei[vB ]}

case : Z ∈∗ ej[vB ]



case precond : {Z ∈∗ ej[vB ]}
(ei((X : x), (K : k), ai3, . . . , ain )[vA]
∧ej ((Z : x′), (F : k), bj2, . . . , bjm )[vB ]

→ ei((X : x), (K : k), ai3, . . . , ain )[vA]
∧ej ((Z : x), (F : k), bj2, . . . , bjm )[vB ])

case postcond : {Z ∈∗ ei[vB ]}

ei((X : x), (K : k), ai3, . . . , ain )[vA] → ei((K : k), ai3, . . . , ain )[vA+1]

ej[vB ] → ej[vB+1]

(∀ei ∈ EA : @ej ∈ EB : ei .K = ej .F) ∨ (∀ej ∈ EB@ei ∈ EA : ej .F = ei .K) :
(ei((X : x), (K : k), ai3, . . . , ain )[va ] → ei((K : k), ai3, . . . , ain )[va+1])

(ej ((F : k), bj2, . . . , bjm )[vb ] → ej ((Z : ⊥), (F : k), bj2, . . . , bjm )[vb+1])

global postcond : {X < SA[va+1], Z ∈ SB[vb+1]}

Fig. 5: Definition of the Move Overwrite Operation, HC2

name Z and with ⊥ as the property value is added to the entities of the target kind. This
ensures schema homogeneity.

The IgnoreThe Ignore Conflict
Resolution Strategy

approach is a similar approach to the Overwrite approach. The only difference
is that we do not overwrite the value if it is already existing. Formally, the only change is in
the case Z ∈∗ ej[vB ]. Instead of the value of X of ei , we keep the present value of Z in ej .
Hence, we are replacing the second case block:



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 17

case : Z ∈∗ ej[vB ]



case precond : {Z ∈∗ ej[vB ]}
(ei((X : x), (K : k), ai3, . . . , ain )[vA]
∧ej ((Z : x′), (F : k), bj2, . . . , bjm )[vB ]

→ ei((X : x), (K : k), ai3, . . . , ain )[vA]
∧ej ((Z : x′), (F : k), bj2, . . . , bjm )[vB ])

case postcond : {Z ∈∗ ei[vB ]}

Since in both approaches both cases have the same postcondition and there may be
overwritten or ignored property values, it is impossible to find an exact query inverse. In
case more sophisticated function are applied for handling n:1 and n:m matches, for instance
the aggregate functions sum or avg, we neither cannot inverse the operations. However,
because we assumed structural homogeneity in this Heterogeneity Class, at least finding of
a relaxed inverse is possible.

2.3.2 The Copy Operation

This operation is similar to the Move operation in the Heterogeneity Class 2. Formally, we
can write the Copy Overwrite operation as:

Semantics of
Copy Overwrite in HC3

B Copy Overwrite A.X To B.Z where A.K = B.F
global precond : {X ∈ SA[vA], Z < BS[vB ]}

SA(X,K, A3, . . . , An)[vA] → SA(X,K, A3, . . . , An)[vA+1]

SB(F, B2, . . . , Bm)[vB ] → SB(Z, F, B2, . . . , Bm)[vB+1]

∀ei ∈ EA, ej ∈ EB, ei .K = ej .F :

case : Z <∗ ej[vB ]



case precond : {Z <∗ ej[vB ]}
(ei((X : x), (K : k), ai3, . . . , ain )[vA]
∧ej ((F : k), bj2, . . . , bjm )[vB ]

→ ei((X : x), (K : k), ai3, . . . , ain )[vA]
∧ej ((Z : x), (F : k), bj2, . . . , bjm )[vB ])

case postcond : {Z ∈∗ ei[vB ]}

case : Z ∈∗ ej[vB ]



case precond : {Z ∈∗ ej[vB ]}
(ei((X : x), (K : k), ai3, . . . , ain )[vA]
∧ej ((Z : x′), (F : k), bj2, . . . , bjm )[vB ]

→ ei((X : x), (K : k), ai3, . . . , ain )[vA]
∧ej ((Z : x), (F : k), bj2, . . . , bjm )[vB ])

case postcond : {Z ∈∗ ei[vB ]}

ei[vA] → ei[vA+1]

ej[vB ] → ej[vB+1]

(∀ei ∈ EA : @ej ∈ EB : ei .K = ej .F) ∨ (∀ej ∈ EB@ei ∈ EA : ej .F = ei .K) :
ei[vA] → ei[vA+1]

(ej ((F : k), bj2, . . . , bjm )[vb ] → ej ((Z : ⊥), (F : k), bj2, . . . , bjm )[vb+1]

global postcond : {X < SA[va+1], Z ∈ SB[vb+1]}



18 Mark Lukas Möller, Meike Klettke, Uta Störl

The necessary changes for the Ignore approach of the Copy operation are comparable to
the Move operation. Here, the semantics block for the second case can be replaced with the
following:

case : Z ∈∗ ej[vB ]



case precond : {Z ∈∗ ej[vB ]}
(ei((X : x), (K : k), ai3, . . . , ain )[vA]
∧ej ((Z : x′), (F : k), bj2, . . . , bjm )[vB ]

→ ei((X : x), (K : k), ai3, . . . , ain )[vA]
∧ej ((Z : x′), (F : k), bj2, . . . , bjm )[vB ])

case postcond : {Z ∈∗ ei[vB ]}

2.4 Heterogeneity Class 4 Key Characteristics
• Heterogeneous data
• Dangling tuples are possible
• m:n cardinalities

Operations of HC4 cover the most compli-
cated cases – and unfortunately these cases
occur natively in NoSQL databases. Now
we assume schema heterogeneity which
means that we have to deal with problems
such as optional properties.

An example for his HC is visualized in Figure 6. Here, a simple Add operation is executed.
The first entity is updated. When the property “founder” is added to the second entity it
is necessary to decide if the value of “founder” is either ignored and the property value
“DFG” is preserved, or if the value is overwritten. Again, we introduce for our approach the
additional keywords Overwrite and Ignore for specifying the conflict resolution strategies.
In contrast to previous heterogeneity classes, this problem also affects single type operations
(like the Add operation) or even for matches with a 1:1 cardinality.

ForOptional Property

Notation (
?
∈)

heterogeneous data sets we need to specify optionality in the semantics. We denote
optional attributes with a question mark. For example, X

?
∈ SA defines, that X is an optional

property in the schema of kind A and can (but not necessarily do) appear in an entity. On
the schema level, we also use the notation SA(X?) for X

?
∈ SA.

{ id : 1,
}

{ id : 2,
founder : "DFG"

}

1.1

1.2

project

{ id : 1,
founder : "DFG"

}

?
{ id : 2,
founder :

}

2.1

2.2

project

Add project.founder = "M-V"

Fig. 6: Possible problem with heterogenous data with the example operation Add Player.points =25
.



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 19

2.4.1 The Add operation

In HC4, we often have to distinguish a couple of cases. After the Add operation, we can
formulate postconditions for the schema level, no matter if we used the Overwrite or the
Ignore approach. We start with the Overwrite approach.

Semantics for
Add Overwrite in HC4

B Add Overwrite A.X = d

global precond : {X
?
∈ SA}

SA(X?, A2, . . . , An)[vt ] → SA(X, A2, . . . , An)[vt+1]

∀ei ∈ EA[vt ] :

case : X < ei[vt ]


case precond : {X < ei[vt ]}

ei(ai2, . . . , ain )[vt ]
→ ei((X : d), ai2, . . . , ain )[vt+1]

case postcond : {X ∈ ei[vt+1]}

case : X ∈ ei[vt ]


case precond : {X ∈ ei[vt ]}

ei((X : x), ai2, . . . , ain )[vt ]
→ ei((X : d), ai2, . . . , ain )[vt+1]

case postcond : {X ∈ ei[vt+1]}

global postcond : {X ∈ SA[vt+1], ∀ei ∈ EA[vt+1] : X ∈ ei}

The first case conditions defines that the property X is not available. On the instance level,
we add the property with the name X and the default value d. The second case describes the
case when the property is already present. On the schema level, there are no changes but on
the instance level, we overwrite existing values of the property X with the default value d.
This operation also can be defined without a default value, denoted with ⊥.

Please Note about
optionality in HC4

note that in HC4 all properties are considered as optional that do not directly affect the
operation (here: A2, . . . , An). For better readability of the operations, we annotate optionality
for properties which have impact on the operation only (here: X).

The Add Ignore operation can defined in a similar way. If a property is available, we
preserve the value instead of overwriting it:



20 Mark Lukas Möller, Meike Klettke, Uta Störl

Semantics for
Add Ignore in HC4

B Add Ignore A.X = d

global precond : {X
?
∈ SA}

SA(X?, A2, . . . , An)[vt ] → SA(X, A2, . . . , An)[vt+1]

∀ei ∈ EA[vt ] :

case : X <∗ ei[vt ]


case precond : {X <∗ ei[vt ]}

ei(ai2, . . . , ain )[vt ]
→ ei((X : d), ai2, . . . , ain )[vt+1]

case postcond : {X ∈∗ ei[vt+1]}

case : X ∈∗ ei[vt ]


case precond : {X ∈∗ ei[vt ]}

ei((X : x), ai2, . . . , ain )[vt ]
→ ei((X : x), ai2, . . . , ain )[vt+1]

case postcond : {X ∈∗ ei[vt+1]}

global postcond : {X ∈ SA[vt+1], ∀ei ∈ EA[vt+1] : X ∈∗ ei}

In both cases, it is not trivial to invert the Add operation. It is unclear if the added property
can be removed as in HC1 because we do not have the information whether the property was
present before the information or not. Nevertheless, to be able to specify a reverse operation,
the property will be removed without respect to the presence before the operation.

2.4.2 The Delete operation

The definition of the Delete operation in Heterogeneity Class 4 is relatively simple. The
property is removed without considering the individual schemas of the entities. Conflict
resolution strategies are not needed. If the property is available, it will be removed. Otherwise,
the entity is not modified. Formally, this can be described as follows:

Semantics of
Delete in HC4

B Delete A.X

global precond : {X
?
∈ SA}

SA(X?, A2, . . . , An)[vt ] → SA(A2, . . . , An)[vt+1]

∀ei ∈ EA[vt ] :

case : X <∗ ei[vt ]


case precond : {X <∗ ei[vt ]}

ei(ai2, . . . , ain )[vt ]
→ ei(ai2, . . . , ain )[vt+1]

case postcond : {X <∗ ei[vt+1]}

case : X ∈∗ ei[vt ]


case precond : {X ∈∗ ei[vt ]}

ei((X : x), ai2, . . . , ain )[vt ]
→ ei(ai2, . . . , ain )[vt+1]

case postcond : {X <∗ ei[vt+1]}

global postcond : {X < SA[vt+1] ∧ ∀ei ∈ EA[vt+1] : X <∗ ei}



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 21

2.4.3 The Rename operation

For the Rename operation we have to distinguish between several cases for each entity.
Basically, we have to consider if the origin property name exists or not and if the new
property name yet exists or not. It is necessary to have a look on all possible combination of
cases. In Heterogeneity Class 4, it is required to specify a conflict resolution approach which
is needed, if the origin and the new property name both exist in advance of the operation,
for instance. The formal semantics for the Rename operation is:

Semantics of
Rename Overwrite in HC4

B Rename Overwrite A.X To Z

global precond : {X
?
∈ SA, Z

?
∈ SA}

SA(X?, Z?A3, . . . , An)[vt ] → SA(Z?, A3, . . . , An)[vt+1]

∀ei ∈ EA[vt ] :

case : X ∈ ei[vt ] ∧ Z < ei[vt ]


case precond : {X ∈ ei[vt ] ∧ Z < ei[vt ]}

ei((X : x), ai3, . . . , ain )[vt ]
→ ei((Z : x), ai3, . . . , ain )[vt+1]

case postcond : {X < ei[vt ] ∧ Z ∈ ei[vt ]}

case : X ∈ ei[vt ] ∧ Z ∈ ei[vt ]


case precond : {X ∈ ei[vt ] ∧ Z ∈ ei[vt ]}

ei((X : x), (Z : z), ai3, . . . , ain )[vt ]
→ ei((Z : x), ai3, . . . , ain )[vt+1]

case postcond : {X < ei[vt ] ∧ Z ∈ ei[vt ]}

case : X < ei[vt ] ∧ Z ∈ ei[vt ]


case precond : {X < ei[vt ] ∧ Z ∈ ei[vt ]}

ei((Z : z), ai3, . . . , ain )[vt ]
→ ei((Z : z), ai3, . . . , ain )[vt+1]

case postcond : {X < ei[vt ] ∧ Z ∈ ei[vt ]}

case : X < ei[vt ] ∧ Z < ei[vt ]


case precond : {X < ei[vt ] ∧ Z < ei[vt ]}

ei(ai3, . . . , ain )[vt ]
→ ei((Z : ⊥), ai3, . . . , ain )[vt+1]

case postcond : {X < ei[vt ] ∧ Z ∈ ei[vt ]}

global postcond : {X < SA[vt+1], Z ∈ SA[vt+1]}

Because it is not known whether the source (X) or the target property (Z) name is present
before the operation, both properties are considered to be optional.

The conditions of the first case are equal to those of HC1. Here, X is present while Z is not
and it is easy to rename the property name. The second case covers the situation where both
X and Z are present in advance of the operation. In this situation, the conflict resolution
strategy Overwrite is applied. The property value of Z is replaced by the value of X and
X is removed from the target side. The third case considers the situation that there is no



22 Mark Lukas Möller, Meike Klettke, Uta Störl

property X which cannot be renamed but a property Z . Here, the entity remains unchanged.
The last case deals with the case that neither X nor Z is present before the operation. In this
case, we introduce a new property with a Null value analogously to the Move and Copy
operation in HC2. With respect to the application context, it might make more sense not
to introduce a Null value but to remain the entity unchanged. This could be covered by
introducing another keyword, e.g. Default Null or Default None which is evaluated if
there is no property after the operation. Due to the broad variety of possiblities, we restric
our semantics to the Overwrite and Ignore approach in the scope of this paper.

TheSemantics of
Rename Ignore in HC4

Rename Ignore approach works quite similar to the introduced Rename Overwrite
approach. Here, the semantics remains the same with the difference of the second case
which is defined as follows.

case : X ∈ ei[vt ] ∧ Z ∈ ei[vt ]


case precond : {X ∈ ei[vt ] ∧ Z ∈ ei[vt ]}

ei((X : x), (Z : z), ai3, . . . , ain )[vt ]
→ ei((Z : z), ai3, . . . , ain )[vt+1]

case postcond : {X < ei[vt ] ∧ Z ∈ ei[vt ]}

If the new and the old property name both exist in advance of the operation, we keep the
existing value instead of overwriting it.

2.4.4 The Move Operation

The multi entity operations Move and Copy are the most difficult cases in HC4. All possible
cardinalities have to be considered as before. Due to schema homogeneity, even for 1:1
cardinalities several cases need to be are distinguished.

{ m_id : 1,
datetimestamp : 67

}

{ m_id : 2
}

e1

e2

e1

{ m_id : 3
}e3

{ m_id : 4,
datetimestamp : 12

}
e4

metadata

{ run_id : 1
}

{ run_id : 2,
datetimestamp : 33

}

e1

e2

{ run_id : 3
}e3

{ run_id : 4,
datetimestamp : 19

}
e4

test_run

Movemetatdata.datetimestamp To test_run.datetimestamp
Wheremetadata.m_id= test_run.run_id

Fig. 7: Emerging cases due to schema heterogeneity in case of matches with 1:1 cardinalities

Figure 7 depicts all the cases which can occur in the 1:1 case for the Move operation. The



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 23

first match depicts the case where “datetimstamp” is present in the entity Kmetadata but
not in the entity of Ktest_run and can be easily moved. The second case describes that
“datetimstamp” is not present in the entity of Kmetadata but in the entity Ktest_run. Here,
the already existing value for “datetimestamp” in the entity of Ktest_run is preserved. The
third case describes the case that “datetimestamp” is not present in any of both entities and
the last case depicts the case where the property is part of both entities. It is required that all
cases are part of the semantics definition of the Move operation.

On the schema level, we definitely know that after the operation SA (in the example Smetadata)
does not contain X (“datetimestamp”) anymore and SB (Stest_run) definitely contains Z
(“datetimestamp”). For all entities without a matching partner, the property is removed if
the entity is on the source side (KA) or the entity gets a property with a ⊥ value on the
target side (KB), respectively.

The definition of the Move operation for HC4 is given in the Appendix of this paper.

The Copy operation As before, the Copy operation is similar to the Move operation and
only differs in keeping the affected property in the entities of the source kind. The definition
of the Copy operation for HC4 is given in the Appendix of this article, too.

3 Impact of the Heterogeneity Classes on Query Rewriting

In NoSQL databases, datasets can be stored in different versions within the same database. If
we want to avoid that the application logic has to be adapted onto several structural versions
of the datasets, we need transparent query rewriting to overcome these heterogeneities
caused by the different versions. Figure 3 shows forward and backward query rewriting for
such applications.

We explain the query rewriting procedure and the application of the semantics for a given
example. The query rewriting has to be adapted onto the concrete HC of the input data. In
case of lazy data migration, datasets can be available in different structural versions. For
simplicity, we show the query rewriting with two versions: vA for the latest version and
vA − 1 for the previous version. Generally, query rewriting with more than 2 versions is
realized in the same way.

In this chapter, we continue with an abstract and much shorter example for focusing on the
aspects of query rewriting. We show how to rewrite data with a lazy migration approach for
data which rely in two different versions. In the following chapter, we will derive a rewriting
component for multiple versions.

Generally, only read-only queries are considered. If there is a writing query, all affected
entities are migrated into the latest version.



24 Mark Lukas Möller, Meike Klettke, Uta Störl

3.1 Backward Query Rewriting for the Evolution Operation Add

In this example, the version vA is generated from the version vA − 1 by applying an Add
operation:

Schema evolution operation: Add A.x = d

Query: Select * From A

This query assumes the schema version vA. For a backward query rewriting, for integrating
entities from version vA − 1, the query is rewritten for the different Heterogeneity Classes.

Query for Heterogeneity Class 1:

For the given HC, Schema evolution operation and original Query, the Query is modified to:

1 SELECT * FROM A WHERE version = vA
2 UNION
3 SELECT *, d AS X FROM A WHERE version = vA − 1.

For datasets in Heterogeneity Class 4, the query rewriting is much more complicated. Here
we get the following rewritten query:

Query for Heterogeneity Class 4 (conflict resolution strategy: Ignore):

For the given HC, Schema evolution operation and original Query, the Query is modified to:

1 SELECT * FROM A WHERE version = vA
2 UNION
3 SELECT * FROM A WHERE version vA − 1 AND Exists(A.x)
4 UNION
5 SELECT *, d AS X FROM A WHERE version = vA AND NOT Exists(A.x)

The first row selects the entities in the newest version for which we can conclude that they
contain the property X . The second row selects all entities that are still in the previous
version and contain the property X . Due to the Ignore conflict resolution strategy, we keep
the value of X . The third row selects the entities in the previous version that do not have a
property X and extends the result with the property X and default value d. TheExists Keyword keyword
[Not] Exists(...) is not part of native SQL but is lend from XPath. It is necessary for
checking the presence or absence of a property, similar as in the semantics.



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 25

3.1.1 Query for Heterogeneity Class 4 (conflict resolution strategy: Overwrite):

For the given HC, Schema evolution operation and original Query, the Query is modified to:

1 SELECT * FROM A Where VERSION = vA
2 UNION
3 SELECT < PropertyList \ {X} >, d AS X FROM A WHERE version vA − 1 AND Exists(A.x)
4 UNION
5 SELECT *, d AS X FROM A WHERE version = vA AND NOT Exists(A.X)

The first subquery selects all entities in the latest version. The second query selects all
entities which are lazy migrated and where A.X is existent before the operation – due to the
Overwrite approach, we need to replace these property values with X. In this case, we can
modify our projection clause by omitting the present property X and select d As X. Here,
<PropertyList> is not an actual SQL keyword and needs to be expanded to the actual
properties of the kind. The last subquery selects all entities where A.X is not present before
the operation. In this case, we can simply select all properties and additionally d As X.

3.2 Backward Query Rewriting for the Evolution Operation Delete

In this example, the version vA is generated from the version vA − 1 by applying an Delete
operation:

Schema evolution operation: Delete A.X

Query: Select * From A

This query assumes the schema version vA. For a backward query rewriting, for integrating
entities from version vA − 1, the query is rewritten for the different Heterogeneity Classes.

Query for Heterogeneity Class 1 – 4:

For the given HC, Schema evolution operation and original Query, the Query is modified to:

1 SELECT * FROM A WHERE version = vA
2 UNION
3 SELECT < PropertyList \ {X} > From A Where version = vA − 1.

Rewriting the Delete operation is identical for all heterogeneity classes. We can select all
properties from the most recent version because they were migrated eagerly and therefore
the deleted property is not present in this version. To select lazy migrated entities, we



26 Mark Lukas Möller, Meike Klettke, Uta Störl

have to expand all properties from the entities of kind A in the query (the resulting set of
properties is denoted as PropertyList) without the property X . The semantics for HC1 and
HC4 is identical except for the precondition and there is no difference in query rewriting for
different heterogeneity classes.

3.3 Backward Query Rewriting for the Evolution Operation Rename

In this example, the version vA is generated from the version vA − 1 by applying a Rename
operation:

Schema evolution operation: Rename A.X To Z

Query: Select * From A

This query assumes the schema version vA. For a backward query rewriting, for integrating
entities from version vA − 1, the query is rewritten for the different Heterogeneity Classes.

Query for Heterogeneity Class 1:

For the given HC, Schema evolution operation and original Query, the Query is modified to:

1 SELECT * FROM A WHERE version = vA
2 UNION
3 SELECT < PropertyList \ {X} >, X AS Z From A

In HC1, we can select the entities in the latest version as in the operations before. For
the lazy migrated entities, we need to select all entities without the renamed one (X) and
substitute the old property name (X) with the new one (Z) by using the As clause. Due to
the characteristics of HC1, we know that all lazy migrated entities have the property X and
there is no entity which has the property Z in advance of the operation.

Query for Heterogeneity Class 4 (Conflict Resolution Strategy: Ignore):

For the given HC, Schema evolution operation and original Query, the Query is modified to:

1 SELECT * FROM A WHERE version = vA
2 UNION
3 SELECT < PropertyList \ {X} >, X AS Z FROM A WHERE version = vA − 1 AND

Exists(A.X) AND NOT Exists(A.Z)↪→

4 UNION
5 SELECT < PropertyList \ {x} >, Null AS Z FROM A WHERE version = vA − 1 AND NOT

Exists(A.X) AND NOT Exists(A.Z)↪→



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 27

6 UNION
7 SELECT * FROM A WHERE version = vA − 1 AND NOT Exists(A.X) AND EXISTS(A.Z)
8 UNION
9 SELECT < PropertyList \ {x} > FROM A WHERE version = vA − 1 AND Exists(A.X) AND

Exists(A.Z)↪→

Query for Heterogeneity Class 3 (Conflict Resolution Strategy: Overwrite):

For the given HC, Schema evolution operation and original Query, the Query is modified to:

1 SELECT * FROM A WHERE version = vA
2 UNION
3 SELECT < PropertyList \ {X} >, X AS Z FROM A WHERE version = vA − 1 AND

Exists(A.X) AND NOT Exists(A.Z)↪→

4 Union
5 SELECT < PropertyList \ {X} >, Null AS Z FROM A WHERE version = vA − 1 AND NOT

Exists(A.X) AND NOT Exists(A.Z)↪→

6 UNION
7 SELECT * FROM A WHERE version = vA − 1 AND NOT Exists(A.X) AND Exists(A.Z)
8 UNION
9 SELECT < PropertyList \ {X, Z} >, X AS Z FROM A WHERE version = vA − 1 AND

Exists(A.X) AND Exists(A.Z)↪→

In both queries, all different cases are present which also occur in the semantics. The first
query fetches the eager migrated entities while the other four queries are the analogies to
the migration rules. The last subquery in both approaches realize the conflict resolution
strategy. Here, both properties X and Z are present in advance of the operation. In the
Ignore approach, we use the value of Z . Hence, we can simply use a projection operation
which selects all properties without X . In the Overwrite approach, we generally select all
properties without X and Z and additionally the value of X with the alias name Z .

3.4 Backward Query Rewriting for the Evolution Operation Move

A more complex example is a version v generated from the version v − 1 by applying a Move
operation:

Schema evolution operation: Move A.X To B.Z Where A.A = B.B

Query: Select * From B

This query assumes the schema version vB for properties of kind B. A backward query
rewriting is also integrating entities that are still in version vB − 1.



28 Mark Lukas Möller, Meike Klettke, Uta Störl

Query for Heterogeneity Class 1:

For the given HC, Schema evolution operation and original Query, the Query is modified to:

1 SELECT * FROM B Where version = vB
2 UNION
3 SELECT * FROM B, X As Z FROM A WHERE A.A = B.B AND A.version = vA − 1 And B.version

= vB − 1↪→

The first Select clause selects all entities in the current version. The second line selects the
entities which are still in the previous version. The property Z ist still available in the entity
A as property X . Because we assume 1:1 cardinalities, we do not need to handle dangling
tuples or multiple matching partners.

Query for Heterogeneity Class 3 (conflict resolution strategy: Ignore):

For the given HC, Schema evolution operation and original Query, the Query is modified to:

1 SELECT * FROM B WHERE B.version = vB
2 UNION
3 SELECT DISTINCT ON(A.A) B.*, A.X FROM A, B WHERE A.A = B.B AND A.version = vA − 1

AND B.version = vB − 1↪→

4 UNION
5 SELECT *, Null AS Z FROM B WHERE B.version = vB − 1 AND B.B NOT IN (SELECT A FROM A

WHERE A.version = vA − 1)↪→

The first query selects all entities in version vB. This implies that each of the entities in this
result set contains the property Z . The second, nested query takes entities from the previous
version and solves the m:n matches. From the view of each concrete entity, these are a m:1
matches. For each matching property, we avoid duplicates with the Distinct On (A.a)
clause to fulfill the Ignore conflict resolution strategy5. The third query is responsible for
0:1 and 0:n matches. We select entities without a matching partner in A and substitute z
with a Null value. As a kind of semantic sugar, we introduce the FIRST MATCH ONLY to
prescind the Distinct on clause which is only Postgres related. Other variants to join the
first matching partner only are possible, too6, and have to be adapted to the used database
system.

5 PostgreSQL Flavor. The Distinct On(...) clause checks for the first match and ignores any additional ones.
6 https://www.periscopedata.com/blog/4-ways-to-join-only-the-first-row-in-sql [2019-04-20]

https://www.periscopedata.com/blog/4-ways-to-join-only-the-first-row-in-sql


Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 29

Query for Heterogeneity Class 4 (conflict resolution strategy: Ignore):

For the given HC, Schema evolution operation and original Query, the Query is modified to:

1 SELECT * FROM B WHERE B.version = vB
2 UNION
3 SELECT * FROM B WHERE B.version = vB − 1 AND Exists(B.z)
4 UNION
5 SELECT DISTINCT ON(A.A) B.*, A.X FROM A, B WHERE A.A = B.B AND B.version = vB − 1

AND A.version = vA − 1 AND NOT Exists(B.Z) AND Exists(A.X)↪→

6 UNION
7 SELECT DISTINCT B.* Null As X FROM A, B WHERE A.A = B.B AND B.version = vB − 1 AND

A.version = vA − 1 AND B.Z IS Null AND NOT Exists(A.X) AND A.A NOT IN (SELECT
DISTINCT A.A FROM A, B WHERE A.A = B.B AND B.version = vB − 1 AND A.version =
vA − 1 AND NOT Exists(B.Z) AND Exists(A.X))

↪→

↪→

↪→

8 UNION
9 SELECT DISTINCT B.*, Null As Z From B WHERE B.B NOT IN (SELECT A FROM A WHERE

A.version = vA − 1) AND B.version = vB − 1 AND NOT Exists(B.Z)↪→

The first query selects all eagerly migrated entities in the current version. The second
subquery selects all entities of B in the previous version that already contain a B.Z in
version vB − 1. Due to the Ignore approach, the value is not affected by the operation. The
third subquery selects the value of B.Z that is still stored in a corresponding A.X , similar
to the query Heterogeneity Class 2. If there are multiple matches, we use the first match.
The fourth subquery checks for entities with a matching partners in kind A whereby the
matching partner does not have the property A.X. In this case, we substitute a Null value.
In this query, we additionally have to exclude results from the previous subquery which is
done using the sub-subquery. Otherwise, if an entity of B in version vB −1 has one matching
partner in kind A in version vA − 1 with a property x and a matching partner in kind A in
version vA − 1 without an property (which means that the entity of kind B is partner in a n:1
cardinality), the entity of kind B is in the result set twice. The last query selects the entities
of B that do not have a matching partner (0:1 cardinalities) and substitute Null values for
corresponding B.z property values. The subqueries of the above given query are directly
derived from the semantics of the Move operation in HC3. Each case in this definition of the
evolution operation generates one subselect clause of the query.

3.5 Backward Query Rewriting for the Evolution Operation Copy

Consider the version v which was generated from the version v − 1 by applying a Copy
operation:

Schema evolution operation: Copy A.X To B.Z Where A.A = B.B

Query: Select * From B



30 Mark Lukas Möller, Meike Klettke, Uta Störl

This query assumes the schema version vB for properties of kind B. A backward query
rewriting is also integrating entities that are still in version vB − 1.

Query for Heterogeneity Class 1:

For the given HC, Schema evolution operation and original Query, the Query is modified to:

1 SELECT * FROM B WHERE version = vB
2 UNION
3 SELECT B.*, A.X AS Z FROM A, B WHERE A.A = B.B AND A.version = vA − 1 AND B.version

= vB − 1↪→

For entities which are migrated eagerly, we can query the newest version. For entities which
are migrated lazily – entities in version vB − 1 – we have to query the second-latest version
as well.

Query for Heterogeneity Class 2 – 4:

Analogously to the previous reason, the Copy operation queries in HC2 and HC3 are equal
to the queries of the Move operation in HC2 and HC3.

4 Outlook: Conceptual Model of a Query Rewriting Component

We introduced a semantics for schema evolution operations in different heterogeneity
classes. The queries of the previous section were generated by hand. It is desirable to have
a component which rewrites queries automatically. While developing a query rewriting
component is out of the scope of this paper, we want to give an outlook of the conceptual
model of such a component.

Lazy migrated entities can be present in several versions in a database. Therefore, the
component needs metadata information which operation affected which kind in which
schema version. Additionally, it is necessary to keep track of all versions of a kind.

The QR component needs to take different kinds into account when multi-entity-operations
were applied. If data needs to be looked up in several versions, a query is generated for each
version. A recursive approach is conceivable which generates query for a version by adapting
the query of the previous version. This entails a high amount of subquery generation of
both the source and the target kind of multi-entity operations are present in several versions
due to a lazy migration approach. If multiple kinds need to be taken into account because a
property was moved or copied across several kinds, this entails a rewriting cascade.



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 31

Conceptually, the metadata for such a QR can be modelled as a graph whereby the nodes
represent the kinds and the edges represent the operations. The edge labels are parametrized
with information about the version of the source and target kind, the name of the source and
target kind and the parametrized operation itself.

We plan to develop and implement a QR routine based on this graph-based model and based
on the semantics in the near future.

5 Related Work

The main focus in this paper is on combining heterogeneity and evolution in NoSQL
databases for query rewriting. For this task, we consider several related work.

In database theory, there are various techniques to define dependencies between two relations.
In the context of schema mapping source-to-target tuple generating dependencies (ST-TGDs)
can be used to describe the dependencies between two databases (cf. [PS11], [AHV95]).
The CHASE algorithm is a fixed-point algorithm that migrates a database instance into
another instance of database by applying the ST-TGDs (cf. [AHV95]).

Schema evolution with complex schema modification operations (SMOs), automated data
migration operations, and automated rewriting of queries for relational databases, has
been investigated by Moon et. al. in the PRISM project [MCZ10]. In [He17], several
schema versions are being maintained within a single relational database. A language for
bidirectional schema evolution and forwards and backwards delta code generation is defined.
Rather than rewriting queries, the authors migrate the data on demand, between the schema
versions. While the problem setting is similar, our solution differs insofar as we rewrite
queries, rather than continuously migrate data between schema versions.

There are several tools for schema evolution of NoSQL databases. Most of them realize an
eager migration, for instance, Mongeez, Flyway and Liquibase. In the context of NoSQL
datastores, however, legacy entities in different schema versions may co-exist in the same
data store, especially in case of lazy and hybrid data migration. The foundation of lazy
NoSQL data migration has been proposed in [SKS13]. A similar approach is introduced in
[SDH16], here the performance of lazy migration in NoSQL data stores has been studied and
in [KSS16] first ideas for hybrid approaches and an estimation of their effort are given. The
foundations on query rewriting in Darwin have been developed in [St17]. Here, operations
are translated into disjunctive embedded dependencies and forward and backward mappings
are defined. For the first heterogeneity classes, prototypical implementations have been
made in this work.

Another approach for query rewriting is developed under the name EasyQ in [Ha18]. In this
article, all variants that occur for each property are stored as so-called paths in a dictionary,
so that each query is expanded. However, this method has the disadvantage that the result
set is too large. The combination of all variants flows into each query result.



32 Mark Lukas Möller, Meike Klettke, Uta Störl

As far as we know, the combination of input data set in different HCs, versioning and
multi-type evolution operation has not been studied before. The first steps in this field are
realized in the Darwin project but this is still an ongoing research task.

6 Summary and Future Work

In lazy data migration, datasets are only updated on demand. Consequently, NoSQL
databases contain datasets in different schema versions. For querying NoSQL data, we have
to apply query rewriting techniques so that queries against the latest version of the schema
are rewritten for querying datasets in previous schema versions. For that, we have to use
the inverse schema evolution operations describing the changes between two successive
structure versions.

In this article, we have shown that query rewriting can be applied straightforward in case
of NoSQL databases in HC1. More complicated are query rewriting operations in case of
dangling tuples in join conditions between two entity types and heterogeneous datasets
within the same version (HC3).

Without any additional knowledge about the NoSQL heterogeneity class of the input data,
we merely expect, that the datasets are in NoSQL HC3 and thus apply the query rewriting
approach considering all structural variants. In case that the datasets are in NoSQL HC1,
query rewriting is much easier. Consequently, information about the NoSQL heterogeneity
class can significantly improve performance of this process. In NoSQL databases with a
rigid schema management, we can guarantee that datasets are in NoSQL HC1. If there are
NoSQL databases that did not yet use a schema management component, we can realize a
schema extraction for deriving the structures and the valid heterogeneity forms of available
databases. Such a schema extraction approach is part of the research prototype Darwin
[KSS15].

The overall aim of the Darwin project is the development of a migration adviser for
supporting users to choose the optimal migration strategy for a certain application. Based on
different NoSQL database characteristics, it shall recommend either eager or lazy migration
or a hybrid approach. In this paper we have shown, that (beside other factors like monetary
costs, latency, and volume of data) even the Heterogeneity Class of the NoSQL data
influences this choice. In case of HC1, a lazy migration can be applied. In datasets in HC3,
eager data migration is more advantageous than lazy or hybrid approaches. In the next step,
we will extend Darwin so that the different heterogeneity classes are taken into account
during query rewriting. We will also consider the heterogeneity classes when developing
the migration adviser in order to select a suitable migration strategy. A tool for determining
the heterogeneity class of a NoSQL database exists.



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 33

References
[AHV95] Abiteboul, Serge; Hull, Richard; Vianu, Victor: Foundations of Databases. Addison-Wesley,

1995.
[Fa11] Fagin, Ronald; Kolaitis, Phokion G.; Popa, Lucian et al.: Schema Mapping Evolution

Through Composition and Inversion. In: Schema Matching and Mapping, Data-Centric
Systems and Applications. Springer, 2011.

[Ha18] Hamadou, Hamdi Ben; Ghozzi, Faïza; Péninou, André et al.: Towards Schema-independent
Querying on Document Data Stores. In: Proc. of the 20th EDBT/10th ICDT (Joint
Conference), Vienna. 2018.

[He17] Herrmann, Kai; Voigt, Hannes; Rausch, Jonas; Behrend, Andreas; Lehner, Wolfgang:
Living in Parallel Realities — Co-Existing Schema Versions with a Bidirectional Database
Evolution Language. In: Proc. SIGMOD ’17. 2017.

[KSS15] Klettke, Meike; Störl, Uta; Scherzinger, Stefanie: Schema Extraction and Structural Outlier
Detection for JSON-based NoSQL Data Stores. In: Proc. 16. BTW, Hamburg, Germany.
volume 241 of LNI. GI, 2015.

[KSS16] Klettke, Meike; Störl, Uta; Shenavai, Manuel: NoSQL schema evolution and big data
migration at scale. In: 2016 IEEE International Conference on Big Data, BigData 2016,
Washington DC. IEEE, 2016.

[MCZ10] Moon, Hyun Jin; Curino, Carlo A.; Zaniolo, Carlo: Scalable Architecture and Query
Optimization for Transaction-time DBs with Evolving Schemas. In: Proc. SIGMOD’10.
2010.

[PS11] Pichler, Reinhard; Skritek, Sebastian: The complexity of evaluating tuple generating
dependencies. In: Database Theory - ICDT 2011, 14th International Conference, Uppsala,
2011. ACM, 2011.

[Ro92] Roddick, John F.: Schema Evolution in Database Systems - An Annotated Bibliography.
SIGMOD record, 21(4):35–40, 1992.

[SDH16] Saur, Karla; Dumitras, Tudor; Hicks, Michael W.: Evolving NoSQL Databases without
Downtime. In: ICSME. IEEE Computer Society, 2016.

[SKS13] Scherzinger, Stefanie; Klettke, Meike; Störl, Uta: Managing Schema Evolution in NoSQL
Data Stores. Proc. DBPL, CoRR, abs/1308.0514, abs/1308.0514, 2013.

[St17] Stenzel, Julian: Query Rewriting in NoSQL-Datenbanksystemen. Master’s thesis, University
of Applied Sciences Darmstadt, 2017.



34 Mark Lukas Möller, Meike Klettke, Uta Störl



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 35

A Appendix

A.1 Move Overwrite Semantics in Heterogeneity Class 4

Semantics of
Move Overwrite in HC4

B Move Overwrite A.X To B.Z Where A.K = B.F

global precond : {X
?
∈ SA[va ], Z

?
∈ SB[vb ]}

SA(X?,K?, A3?, . . . , An?)[va ] → SA(K?, A3?, . . . , An?)[va+1]

SB(F?, B2?, . . . , Bm?)[vb ] → SB(Z, F?, B2?, . . . , Bm?)[vb+1]

∀ei ∈ EA, ej ∈ EB, ei .K = ej .F :

case : X ∈∗ ei[va ]



case : Z <∗ ej[vb ]



case precond : {X ∈∗ ei[va ] ∧ Z <∗ ej[vb ]}
(ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((F : k), bj2, . . . , bjm )[vb ]

→ ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((Z : x), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X ∈∗ ei[va ] ∧ Z ∈∗ ej[vb ]}

case : Z ∈∗ ej[vb ]



case precond : {X ∈∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
(ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ]

→ ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((Z : x), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X ∈∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
ei((X : x), (K : k), ai3, . . . , ain )[va ] → ei((K : k), ai3, . . . , ain )[va+1]
ej[vb ] → ej[vb+1]
case postcond : {X <∗ ei[va+1] ∧ Z ∈∗ ej[vb+1]}

case : X <∗ ei[va ]



case : Z ∈∗ ej[vb ]



case precond : {X <∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
(ei((K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ]

→ ei((K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X <∗ ei[va ] ∧ Z ∈∗ ej[vb ]}

case : Z <∗ ej[vb ]



case precond : {X <∗ ei[va ] ∧ Z <∗ ej[vb ]}
(ei((K : k), ai3, . . . , ain )[va ]
∧ej ((F : k), bj2, . . . , bjm )[vb ]

→ ei((K : k), ai3, . . . , ain )[va ]
x ∧ ej ((Z : ⊥), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X <∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
ei[va ] → ei[va+1]
ej[vb ] → ej[vb+1]
case postcond : {X <∗ ei[va+1] ∧ Z ∈∗ ej[vb+1]}

(∀ei ∈ EA : @ej ∈ EB : ei .K = ej .F) ∨ (∀ej ∈ EB@ei ∈ EA : ej .F = ei .K) :
(ei((X : x), (K : k), ai3, . . . , ain )[va ] → ei((K : k), ai3, . . . , ain )[va+1])

(ei((K : k), ai3, . . . , ain )[va ] → ei((K : k), ai3, . . . , ain )[va+1])

(ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ] → ej ((Z : z), (F : k), bj2, . . . , bjm )[vb+1])

(ej ((F : k), bj2, . . . , bjm )[vb ] → ej ((Z : ⊥), (F : k), bj2, . . . , bjm )[vb+1])

global postcond : {X < SA[va+1], Z ∈ SB[vb+1]}



36 Mark Lukas Möller, Meike Klettke, Uta Störl

A.2 Move Ignore Semantics in Heterogeneity Class 4

Semantics of
Move Ignore in HC4

B Move Ignore A.X To B.Z Where A.K = B.F

global precond : {X
?
∈ SA[va ], Z

?
∈ SB[vb ]}

SA(X?,K?, A3?, . . . , An?)[va ] → SA(K?, A3?, . . . , An?)[va+1]

SB(F?, B2?, . . . , Bm?)[vb ] → SB(Z, F?, B2?, . . . , Bm?)[vb+1]

∀ei ∈ EA, ej ∈ EB, ei .K = ej .F :

case : X ∈∗ ei[va ]



case : Z <∗ ej[vb ]



case precond : {X ∈∗ ei[va ] ∧ Z <∗ ej[vb ]}
(ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((F : k), bj2, . . . , bjm )[vb ]

→ ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((Z : x), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X ∈∗ ei[va ] ∧ Z ∈∗ ej[vb ]}

case : Z ∈∗ ej[vb ]



case precond : {X ∈∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
(ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ]

→ ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X ∈∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
ei((X : x), (K : k), ai3, . . . , ain )[va ] → ei((K : k), ai3, . . . , ain )[va+1]
ej[vb ] → ej[vb+1]
case postcond : {X <∗ ei[va+1] ∧ Z ∈∗ ej[vb+1]}

case : X <∗ ei[va ]



case : Z ∈∗ ej[vb ]



case precond : {X <∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
(ei((K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ]

→ ei((K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X <∗ ei[va ] ∧ Z ∈∗ ej[vb ]}

case : Z <∗ ej[vb ]



case precond : {X <∗ ei[va ] ∧ Z <∗ ej[vb ]}
(ei((K : k), ai3, . . . , ain )[va ]
∧ej ((F : k), bj2, . . . , bjm )[vb ]

→ ei((K : k), ai3, . . . , ain )[va ]
x ∧ ej ((Z : ⊥), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X <∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
ei[va ] → ei[va+1]
ej[vb ] → ej[vb+1]
case postcond : {X <∗ ei[va+1] ∧ Z ∈∗ ej[vb+1]}

(∀ei ∈ EA : @ej ∈ EB : ei .K = ej .F) ∨ (∀ej ∈ EB@ei ∈ EA : ej .F = ei .K) :
(ei((X : x), (K : k), ai3, . . . , ain )[va ] → ei((K : k), ai3, . . . , ain )[va+1])

(ei((K : k), ai3, . . . , ain )[va ] → ei((K : k), ai3, . . . , ain )[va+1])

(ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ] → ej ((Z : z), (F : k), bj2, . . . , bjm )[vb+1])

(ej ((F : k), bj2, . . . , bjm )[vb ] → ej ((Z : ⊥), (F : k), bj2, . . . , bjm )[vb+1])

global postcond : {X < SA[va+1], Z ∈ SB[vb+1]}



Formal Semantics of NoSQL Evolution Operations for Different Data Heterogeneity Classes 37

A.3 Copy Overwrite Semantics in Heterogeneity Class 4

Semantics of
Copy Overwrite in HC4

B Copy Overwrite A.X To B.Z Where A.K = B.F

global precond : {X
?
∈ SA[va ], Z

?
∈ SB[vb ]}

SA(X?,K?, A3?, . . . , An?)[va ] → SA(X?,K?, A3?, . . . , An?)[va+1]

SB(F?, B2?, . . . , Bm?)[vb ] → SB(Z, F?, B2?, . . . , Bm?)[vb+1]

∀ei ∈ EA, ej ∈ EB, ei .K = ej .F :

case : X ∈∗ ei[va ]



case : Z <∗ ej[vb ]



case precond : {X ∈∗ ei[va ] ∧ Z <∗ ej[vb ]}
(ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((F : k), bj2, . . . , bjm )[vb ]

→ ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((Z : x), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X ∈∗ ei[va ] ∧ Z ∈∗ ej[vb ]}

case : Z ∈∗ ej[vb ]



case precond : {X ∈∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
(ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ]

→ ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((Z : x), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X ∈∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
ei[va ] → ei[va+1]
ej[vb ] → ej[vb+1]
case postcond : {X <∗ ei[va+1] ∧ Z ∈∗ ej[vb+1]}

case : X <∗ ei[va ]



case : Z ∈∗ ej[vb ]



case precond : {X <∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
(ei((K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ]

→ ei((K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X <∗ ei[va ] ∧ Z ∈∗ ej[vb ]}

case : Z <∗ ej[vb ]



case precond : {X <∗ ei[va ] ∧ Z <∗ ej[vb ]}
(ei((K : k), ai3, . . . , ain )[va ]
∧ej ((F : k), bj2, . . . , bjm )[vb ]

→ ei((K : k), ai3, . . . , ain )[va ]
x ∧ ej ((Z : ⊥), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X <∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
ei[va ] → ei[va+1]
ej[vb ] → ej[vb+1]
case postcond : {X <∗ ei[va+1] ∧ Z ∈∗ ej[vb+1]}

(∀ei ∈ EA : @ej ∈ EB : ei .K = ej .F) ∨ (∀ej ∈ EB@ei ∈ EA : ej .F = ei .K) :
(ei[va ] → ei[va+1])

(ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ] → ej ((Z : z), (F : k), bj2, . . . , bjm )[vb+1])

(ej ((F : k), bj2, . . . , bjm )[vb ] → ej ((Z : ⊥), (F : k), bj2, . . . , bjm )[vb+1])

global postcond : {X < SA[va+1], Z ∈ SB[vb+1]}



38 Mark Lukas Möller, Meike Klettke, Uta Störl

A.4 Copy Ignore Semantics in Heterogeneity Class 4

Semantics of
Copy Overwrite in HC4

B Copy Overwrite A.X To B.Z Where A.K = B.F

global precond : {X
?
∈ SA[va ], Z

?
∈ SB[vb ]}

SA(X?,K?, A3?, . . . , An?)[va ] → SA(X?,K?, A3?, . . . , An?)[va+1]

SB(F?, B2?, . . . , Bm?)[vb ] → SB(Z, F?, B2?, . . . , Bm?)[vb+1]

∀ei ∈ EA, ej ∈ EB, ei .K = ej .F :

case : X ∈∗ ei[va ]



case : Z <∗ ej[vb ]



case precond : {X ∈∗ ei[va ] ∧ Z <∗ ej[vb ]}
(ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((F : k), bj2, . . . , bjm )[vb ]

→ ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((Z : x), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X ∈∗ ei[va ] ∧ Z ∈∗ ej[vb ]}

case : Z ∈∗ ej[vb ]



case precond : {X ∈∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
(ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ]

→ ei((X : x), (K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X ∈∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
ei[va ] → ei[va+1]
ej[vb ] → ej[vb+1]
case postcond : {X <∗ ei[va+1] ∧ Z ∈∗ ej[vb+1]}

case : X <∗ ei[va ]



case : Z ∈∗ ej[vb ]



case precond : {X <∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
(ei((K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ]

→ ei((K : k), ai3, . . . , ain )[va ]
∧ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X <∗ ei[va ] ∧ Z ∈∗ ej[vb ]}

case : Z <∗ ej[vb ]



case precond : {X <∗ ei[va ] ∧ Z <∗ ej[vb ]}
(ei((K : k), ai3, . . . , ain )[va ]
∧ej ((F : k), bj2, . . . , bjm )[vb ]

→ ei((K : k), ai3, . . . , ain )[va ]
x ∧ ej ((Z : ⊥), (F : k), bj2, . . . , bjm )[vb ])

case postcond : {X <∗ ei[va ] ∧ Z ∈∗ ej[vb ]}
ei[va ] → ei[va+1]
ej[vb ] → ej[vb+1]
case postcond : {X <∗ ei[va+1] ∧ Z ∈∗ ej[vb+1]}

(∀ei ∈ EA : @ej ∈ EB : ei .K = ej .F) ∨ (∀ej ∈ EB@ei ∈ EA : ej .F = ei .K) :
(ei[va ] → ei[va+1])

(ej ((Z : z), (F : k), bj2, . . . , bjm )[vb ] → ej ((Z : z), (F : k), bj2, . . . , bjm )[vb+1])

(ej ((F : k), bj2, . . . , bjm )[vb ] → ej ((Z : ⊥), (F : k), bj2, . . . , bjm )[vb+1])

global postcond : {X < SA[va+1], Z ∈ SB[vb+1]}


	Introduction
	Semantics of the Evolution Operations
	Heterogeneity Class 1
	The Add Operation
	The Rename Operation
	The Delete Operation
	The Move Operation
	The Copy operation

	Heterogeneity Class 2
	The Move Operation
	The Copy Operation

	Heterogeneity Class 3
	The Move Operation
	The Copy Operation

	Heterogeneity Class 4
	The Add operation
	The Delete operation
	The Rename operation
	The Move Operation


	Impact of the Heterogeneity Classes on Query Rewriting
	Backward Query Rewriting for the Evolution Operation Add
	Query for Heterogeneity Class 4 (conflict resolution strategy: Overwrite):

	Backward Query Rewriting for the Evolution Operation Delete
	Backward Query Rewriting for the Evolution Operation Rename
	Backward Query Rewriting for the Evolution Operation Move
	Backward Query Rewriting for the Evolution Operation Copy

	Outlook: Conceptual Model of a Query Rewriting Component
	Related Work
	Summary and Future Work
	Appendix
	Move Overwrite Semantics in Heterogeneity Class 4
	Move Ignore Semantics in Heterogeneity Class 4
	Copy Overwrite Semantics in Heterogeneity Class 4
	Copy Ignore Semantics in Heterogeneity Class 4


